Advertisement

Thermographic Characterisation of the Deformation and Fracture Behaviour of Polymers with High Time and Spatial Resolution

  • M. Stein
  • K. Schneider
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

The thermo-mechanical coupling of polymers describes the dissipative heating during plastic deformation, which again changes the local molecular mobility. It was investigated at the example of poly(ethylene terephthalate) (PET) and polycarbonate (PC). Depending on the sample geometry certain amount of stored elastic energy is available for neck initiation accompanied by local heating of the sample. In case of the semicrystalline PET temperature jumps until and above the glass transition temperature (T g) can be observed, meanwhile the temperature increase at yield is significant below T g for PC. At crack initiation and fracture a further increase of the temperature is detectable for both materials, for PET close to the melting temperature of the crystalline phase and for PC above T g. The discussion of polymer yielding and fracture with respect to preceding temperature changes casts a new light on relevant molecular processes.

References

  1. 1.
    Rittel, D.: On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mech. Mater. 31, 131–139 (1999)CrossRefGoogle Scholar
  2. 2.
    Regev, A., Rittel, D.: Simultaneous transient temperature sensing of impacted polymers using infrared detectors and thermocouples. Exp. Mech. 48, 675–682 (2008)CrossRefGoogle Scholar
  3. 3.
    Garg, M., Mulliken, A.D., Boyce, M.C.: Temperature rise in polymeric materials during high rate deformation. J. Appl. Mech. 75, 1–8 (2008)CrossRefGoogle Scholar
  4. 4.
    Ames, N.M., Srivastava, V., Chester, S.A., Anand, L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications. Int. J. Plast 25, 1495–1539 (2009)CrossRefGoogle Scholar
  5. 5.
    Maurel-Pantel, A., Baquet, E., Bikard, J., Bouvard, J.L., Billon, N.: A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66. Int. J. Plast 67, 102–126 (2015)CrossRefGoogle Scholar
  6. 6.
    Bouvard, J.L., Francis, D.K., Tschopp, M.A., Marin, E.B., Bammann, D.J., Horstemeyer, M.F.: An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation. Int. J. Plast 42, 168–193 (2013)CrossRefGoogle Scholar
  7. 7.
    Cross, A., Haward, R.N.: Thermal fracture of plastics. J. Polym. Sci.: Polym. Phys. Ed. 11, 2423–2439 (1973)Google Scholar
  8. 8.
    Cross, A., Hall, M., Haward, R.N.: Thermal effects in the necking of thermoplastics. Nature 253, 340–341 (1975)CrossRefGoogle Scholar
  9. 9.
    Haward, R.N.: Heating effects in the deformation of thermoplastics. Thermochim. Acta 247, 87–109 (1994)CrossRefGoogle Scholar
  10. 10.
    Yamauchi, T.: Observation of polymer film drawing by use of thermography. An introductory investigation on the thermodynamics. J. Appl. Polym. Sci. 100, 2895–2900 (2006)CrossRefGoogle Scholar
  11. 11.
    Bazhenov, S.L., Kechekyan, A.S.: Heating of polymers during neck propagation. Polym. Sci. Ser. A 55, 404–414 (2013)CrossRefGoogle Scholar
  12. 12.
    Brites, C.D.S., Lima, P.P., Silva, N.J.O., Millan, A., Amaral, V.S., Palacio, F., Carlos, L.D.: Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012)CrossRefGoogle Scholar
  13. 13.
    Vollmer, M., Möllmann, K.-P.: Infrared Thermal Imaging: Fundamentals, Research and Applications. Wiley, Berlin (2011)Google Scholar
  14. 14.
    Koenen, J.A.: Observation of the heat exchange during deformation using an infra-red camera. Polymer 33, 4732–4736 (1992)CrossRefGoogle Scholar
  15. 15.
    Cao, K., Wang, Y., Wang, Y.: Effects of strain rate and temperature on the tension behavior of polycarbonate. Mater. Des. 38, 53–58 (2012)CrossRefGoogle Scholar
  16. 16.
    Kästner, M., Obst, M., Brummund, J., Thielsch, K., Ulbricht, V.: Inelastic material behavior of polymers—Experimental characterization, formulation and implementation of a material model. Mech. Mater. 52, 40–57 (2012)CrossRefGoogle Scholar
  17. 17.
    Gorlier, E., Haudin, J.M., Billon, N.: Strain-induced crystallisation in bulk amorphous PET under uniaxial loading. Polymer 42, 9541–9549 (2001)CrossRefGoogle Scholar
  18. 18.
    Pawlak, A., Galeski, A., Rozanski, A.: Cavitation during deformation of semicrystalline polymers. Prog. Polym. Sci. 39, 921–958 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Stein
    • 1
  • K. Schneider
    • 2
  1. 1.Institute of Processing Machines and Mobile MachineryDresden University of TechnologyDresdenGermany
  2. 2.Leibniz Institute for Polymer Research Dresden e.V.DresdenGermany

Personalised recommendations