Characterisation of the Ultimate Tensile Properties of Elastomers by a Dimensionless Hooke Number—A New Approach to Failure Envelopes

  • N. Rennar
  • P. Kirchner
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


The ultimate tensile properties of polymeric materials can be described by different kinds of master curves. Attention is focused mainly on the dimensionless Hooke number He fairly unknown in the literature. This quantity is defined and its utility to characterise the fracture mechanical properties of chemically uncrosslinked thermoplastics as well as very slightly crosslinked rubbers is discussed in detail. Pronounced differences were observed in a double logarithmic plot of the Hooke number versus the elongation at break ε b for these two types of polymeric materials. The reasons of these discrepancies are explained on a molecular level. Furthermore, the effect of carbon black as reinforcing filler and its influence on the Hooke number is analysed. The presented test results support the idea that the Hooke number is adequate to characterise the fracture mechanical behaviour of polymers in a similar manner as do the well-known failure envelope representations.



The authors would like to express their gratitude to Dr. S. Seibold from ContiTech MGW GmbH for financial support and the permission to publish the results of this study.


  1. 1.
    Smith, T.L.: Dependence of the ultimate properties of a GR-S rubber on strain rate and temperature. J. Polym. Sci. Part A: Polym. Chem. 32, 99–113 (1958)Google Scholar
  2. 2.
    Smith, T.L.: Ultimative tensile properties of elastomers. I. Characterization by a time and temperature failure envelope. J. Polym. Sci. Part A: Polym. Chem. 1, 3597–3615 (1963)Google Scholar
  3. 3.
    Bueche, F.: Physical Properties of Polymers. Interscience Publishers, New York (1962)Google Scholar
  4. 4.
    Landel, R.F., Fedors, R.F.: Rupture behavior of elastomers: effect of statistical variability and crosslink density. J. Polym. Sci. Part C: Polym. Lett. 1, 539–544 (1963)Google Scholar
  5. 5.
    Halpin, J.C.: Fracture of amorphous polymer solids: time to break. J. Appl. Phys. 35, 3133–3141 (1964)CrossRefGoogle Scholar
  6. 6.
    Ecker, R.: Der Einfluß verstärkender Ruße auf die viskoelastischen Eigenschaften von amorphen Elastomeren. KGK—Kautsch. Gummi Kunstst. 21, 304–317 (1968)Google Scholar
  7. 7.
    Halpin, J.C., Bueche, F.: Fracture of amorphous polymeric solids: reinforcement. J. Appl. Phys. 35, 3142–3149 (1964)CrossRefGoogle Scholar
  8. 8.
    Smith, T.L.: Strength and extensibility of elastomers. In: Eirich, F.R. (ed.) Rheology—Theory and Applications, Vol. 5. Academic Press, New York (1969), pp. 127–222Google Scholar
  9. 9.
    Landel, R.F., Fedors, R.F.: Fracture of amorphous polymers. In: Proceeding of the 1st International Conference on Fracture (Sendai, 12.–17.09.1965). Japanese Society for Strength and Fracture of Materials, Tokyo (1966), Vol. 2, pp. 1247–1256Google Scholar
  10. 10.
    Landel, R.F., Fedors, R.F.: Fracture of amorphous polymers. Rubber Chem. Technol. 40, 1049–1059 (1967)CrossRefGoogle Scholar
  11. 11.
    Harwood, J.A.C., Payne, A.R., Smith, J.F.: A new approach to rubber reinforcement. KGK—Kautsch. Gummi Kunstst. 22, 548–553 (1969)Google Scholar
  12. 12.
    Elias, H.-G.: A master curve for tensile properties of thermoplastics. Macromol. Chem. Phys. 195, 3117–3131 (1994)CrossRefGoogle Scholar
  13. 13.
    Nielsen, L.E., Landel, R.F.: Mechanical Properties of Polymers and Composites, 2nd edn. Marcel Dekker, New York (1994), p. 253Google Scholar
  14. 14.
    Richard, R.M.: A Study of Structural System Having Nonlinear Elements. PhD thesis, Purdue University, Lafayette (1961)Google Scholar
  15. 15.
    Kirchner, P.: Synthese thermischer und mechanischer stabiler, gummielastischer Polymer-netzwerke sowie Untersuchung ihrer mechanischen Eigenschaften. Master thesis, Hochschule Würzburg-Schweinfurt, Würzburg (2014)Google Scholar
  16. 16.
    Treloar, L.R.G.: The photoelastic properties of short-chain molecular networks. Trans. Faraday Soc. 50, 881–896 (1954)CrossRefGoogle Scholar
  17. 17.
    Smith, K.J., Greene, A., Ciferri, A.: Crystallization under stress and non-Gaussian behavior of macromolecular networks. Kolloid-Zeitschrift und Zeitschrift für Polymere 194, 49–67 (1964)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • N. Rennar
    • 1
  • P. Kirchner
    • 1
  1. 1.Plastics and Elastomer TechnologyUniversity of Applied Sciences Würzburg-SchweinfurtWürzburgGermany

Personalised recommendations