Comparison Between Peroxide and Radiation Crosslinking of Nitrile Rubber

  • K. Bandzierz
  • D. M. Bielinski
  • G. Przybytniak
  • M. Jaszczak
  • A. Marzec
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


In the present study, two methods of nitrile rubber curing were compared: peroxide and radiation crosslinking. Both methods lead to formation of carbon–carbon crosslinks, directly between the polymer chains. The nitrile rubber samples were unfilled, and filled with silica, carbon black, organoclay and graphene nanoplatelets. The chain scission to crosslinking ratio was calculated on the basis of the Charlesby-Pinner equation. It was demonstrated that radiation curing results in lower number of chain scission events than peroxide thermal curing. Mechanical properties tests showed that the radiation-cured samples generally show better tensile strength and larger elongation at break than the peroxide-cured samples with the same values of crosslink density. It was proved that radiation curing can be successfully used to alter the properties of the composite materials based on nitrile rubber.


  1. 1.
    Dluzneski, P.R.: Peroxide vulcanization of elastomers. Rubber Chem. Technol. 74, 451–492 (2001)CrossRefGoogle Scholar
  2. 2.
    Bohm, G.G.A., Tveekrem, J.O.: The radiation chemistry of elastomers and its industrial applications. Rubber Chem. Technol. 55, 575–668 (1982)CrossRefGoogle Scholar
  3. 3.
    Clough, R.L.: High-energy radiation and polymers: a review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res., Sect. B 185, 8–33 (2001)CrossRefGoogle Scholar
  4. 4.
    Cleland, M.R.: Industrial applications of electron accelerators. In: Brandt, D. (ed.) Proceedings of CERN Accelerator School (CAS) (Zeegse, 24.05.–02.06.2005). Yellow reports, CERN, Geneva (2006), pp. 383–416Google Scholar
  5. 5.
    Loan, L.D.: Peroxide crosslinking reactions of polymers. Pure Appl. Chem. 30, 173–180 (1972)CrossRefGoogle Scholar
  6. 6.
    Manaila, E., Stelescu, M.D., Craciun, G.: Aspects regarding radiation crosslinking of elastomers. In: Boczkowska, A. (ed.) Advanced Elastomer Technology, Properties and Applications, pp. 3–34. InTech, Rijeka (2012)Google Scholar
  7. 7.
    Bandzierz, K., Bielinski, D., Korycki, A., Przybytniak, G.: Radiation crosslinking of acrylonitrile–butadiene rubber: The influence of sulphur and dibenzothiazole disulphide on the process. In: Bielinski, D.M., Kozlowski, R., Zaikov, G.E. (eds.) High Performance Elastomer Materials, pp. 129–141. Apple Academic Press, Waretown (2014)Google Scholar
  8. 8.
    Basfar, A.A., Silverman, J.: Improved ozone resistance of styrene butadiene rubber cured by a combination of sulfur and ionizing radiation. Polym. Degrad. Stab. 46, 1–8 (1994)CrossRefGoogle Scholar
  9. 9.
    Ahmed, S., Abdel Aziz, A.A., Basfar, M.M.: Comparison of thermal stability of sulfur, peroxide and radiation cured NBR and SBR vulcanizates. Polym. Degrad. Stab. 67, 319–323 (2000)CrossRefGoogle Scholar
  10. 10.
    Bik, J.M., Rzymski, W.M., Gluszewski, W., Zagorski, Z.P.: Electron beam crosslinking of hydrogenated acrylonitrile–butadiene rubber. KGK—Kautsch. Gummi Kunstst. 57, 651–655 (2004)Google Scholar
  11. 11.
    Gluszewski, W., Zagorski, Z.P.: Radiation sterilization of healthcare products. Contemp. Oncol. 7, 787–790 (2003)Google Scholar
  12. 12.
    Panta, P.P., Gluszewski, W.: Dosimetric control of high energy EB. Contemp. Oncol. 8, 342–346 (2004)Google Scholar
  13. 13.
    Podrez-Radziszewska, M., Gluszewski, W.: Radiation modification of polyethylene surgical implants. Contemp. Oncol. 9, 357–365 (2005)Google Scholar
  14. 14.
    Charlesby, A., Pinner, S.H.: Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proc. Roy. Soc. London A 249, 367–386 (1959)CrossRefGoogle Scholar
  15. 15.
    Flory, P.J., Rehner, J.: Statistical mechanics of crosslinked polymer networks II Swelling. J. Chem. Phy. 11, 521–526 (1943)CrossRefGoogle Scholar
  16. 16.
    Hwang, W.-G., Wei, K.-H., Wu, C.-M.: Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites. Polym. Eng. Sci. 44, 2117–2124 (2004)CrossRefGoogle Scholar
  17. 17.
    Barton, J.: Peroxide crosslinking of poly(n-alkyl methacrylates). J. Polym. Sci., Part A: Polym. Chem. 6, 1315–1323 (1968)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • K. Bandzierz
    • 1
  • D. M. Bielinski
    • 1
    • 2
  • G. Przybytniak
    • 3
  • M. Jaszczak
    • 1
  • A. Marzec
    • 1
  1. 1.Faculty of Chemistry, Institute of Polymer & Dye TechnologyŁodz University of TechnologyŁodzPoland
  2. 2.Institute for Engineering of Polymer Materials & DyesDivision of Elastomers & Rubber TechnologyPiastowPoland
  3. 3.Institute of Nuclear Chemistry and TechnologyWarsawPoland

Personalised recommendations