Advertisement

Mechanical Reinforcement in a Polyisoprene Rubber by Hybrid Nanofillers

  • S. Agnelli
  • V. Cipolletti
  • S. Musto
  • M. Coombs
  • L. Conzatti
  • S. Pandini
  • M. S. Galimberti
  • T. Riccò
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

Melt blending of hybrid nanofillers with rubber matrices could make rubber nanocomposites more attractive for industrial applications. In this work, the low-amplitude dynamic shear modulus of polyisoprene rubber filled with carbon nanotubes or nano-graphite, individually or in combination with carbon black, was measured. A rationalisation of the results highlighted interactive effects of carbon allotropes on the mechanical reinforcement of rubber nanocomposites. The filler–matrix interfacial area was identified as a parameter able to correlate the moduli values of different fillers, by reducing them to a common master curve.

References

  1. 1.
    Nanko, M.: Definitions and categories of hybrid materials. Adv. Technol. Mater. Mater. Process. 11, 1–8 (2009)Google Scholar
  2. 2.
    Lorenz, H., Fritzsche, J., Das, A., Stoeckelhuber, K.W., Jurk, R., Heinrich, G., Klüppel, M.: Advanced elastomer nano-composites based on CNT-hybrid filler systems. Compos. Sci. Technol. 69, 2135–2143 (2009)CrossRefGoogle Scholar
  3. 3.
    Malas, A., Das, C.K., Das, A., Heinrich, G.: Development of expanded graphite filled natural rubber vulcanizates in presence and absence of carbon black: Mechanical, thermal and morphological properties. Mater. Des. 39, 410–417 (2012)CrossRefGoogle Scholar
  4. 4.
    Galimberti, M., Coombs, M., Cipolletti, V., Riccio, P., Riccò, T., Passera, S., Pandini, S., Conzatti, L., Ravasio, A., Tritto, I.: The role of CNTs in promoting hybrid filler networking and synergism with carbon black in the mechanical behavior of filled polyisoprene. Macromol. Mater. Eng. 298, 241–251 (2012)CrossRefGoogle Scholar
  5. 5.
    Mauro, M., Cipolletti, V., Galimberti, M., Longo, P., Guerra, G.: Chemically reduced graphite oxide with improved shape anisotropy. J. Phys. Chem. C 116, 24809–24813 (2012)CrossRefGoogle Scholar
  6. 6.
    Galimberti, M., Kumar, V., Coombs, M., Cipolletti, V., Agnelli, S., Pandini, S., Conzatti, L.: Filler networking of a nanographite with a high shape anisotropy and synergism with carbon black in poly(1,4-cis-isoprene) based nanocomposites. Rubber Chem. Technol. 87, 197–218 (2014)CrossRefGoogle Scholar
  7. 7.
    Agnelli, S., Cipolletti, V., Musto, S., Coombs, M., Conzatti, L., Pandini, S., Riccò, T., Galimberti, M.: Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites. Express Polym. Lett. 8, 436–449 (2014)CrossRefGoogle Scholar
  8. 8.
    Sternstein, S.S., Ramorino, G., Jang, B., Zhu, A.-J.: Reinforcement and nonlinear viscoelasticity of polymer melts containing mixtures of nanofillers. Rubber Chem. Technol. 78, 258–270 (2005)CrossRefGoogle Scholar
  9. 9.
    Mark, J.E., Erman, B., Eirich, F.R. (eds.): Science and Technology of Rubber, 2nd edn. Academic Press, San Diego (1994)Google Scholar
  10. 10.
    Heinrich, G., Klüppel, M.: Recent advances in the theory of filler networking in elastomers. Adv. Polym. Sci. 160, 1–44 (2002)CrossRefGoogle Scholar
  11. 11.
    Kalfus, J., Jančář, J.: Elastic response of nanocomposite poly(vinylacetate)–hydroxyapatite with varying particle shape. Polym. Compos. 28, 365–371 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • S. Agnelli
    • 1
  • V. Cipolletti
    • 2
  • S. Musto
    • 2
  • M. Coombs
    • 3
  • L. Conzatti
    • 4
  • S. Pandini
    • 1
  • M. S. Galimberti
    • 2
  • T. Riccò
    • 1
  1. 1.University of BresciaBresciaItaly
  2. 2.Polytechnic University of MilanMilanItaly
  3. 3.Pirelli TyreMilanItaly
  4. 4.Institute for Macromolecular Research, National Research CouncilGenovaItaly

Personalised recommendations