Advertisement

Investigations of Elastomeric Seals—Low-Temperature Performance and Ageing Behaviour

  • M. Jaunich
  • A. Kömmling
  • D. Wolff
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

Due to their simple and reliable application, elastomers are used for many tasks. Many fields of application like transport, aviation and process technology, entail low temperatures where proper functionality of the employed seals has to be ensured. Therefore, understanding the low-temperature behaviour of elastomeric seals is important for safe seal operation to restrict the temperature application range. For all areas of application, the question of seal lifetime is also important for replacement or maintenance intervals. The lifetime is especially important in applications that allow no seal replacement. Since the seal can determine the lifetime of storage in such cases, reliable lifetime estimation is necessary for these applications, and requires an extensive knowledge of the specific aging behaviour.

References

  1. 1.
    Streit, G., Achenbach, M., Kanters, A.: Sealability of O-rings at low-temperatures 1. Sealability without media influence at low-temperatures. KGK—Kautsch. Gummi Kunstst. 44, 866–870 (1991)Google Scholar
  2. 2.
    Jaunich, M.: Tieftemperaturverhalten von Elastomeren im Dichtungseinsatz. PhD thesis, BAM-Dissertationsreihe Vol. 79, Bundesanstalt für Materialforschung und Prüfung, Berlin (2012)Google Scholar
  3. 3.
    Randler, R.: Tieftemperatureigenschaften von Elastomerwerkstoffen. In: Berger, K.-F., Kiefer, S. (eds.) Dichtungstechnik Jahrbuch 2013. ISGATEC, Mannheim (2013), pp. 130–146Google Scholar
  4. 4.
    Jaunich, M., Stark, W., Wolff, D.: Low temperature properties of rubber seals. In: Proccedings of the 9th Fall Rubber Colloquium, Hanover, 03–05 Nov 2010. Deutsches Institut für Kautschuk-technologie, Hanover (2010), pp. 175–178Google Scholar
  5. 5.
    Jaunich, M., Stark, W., Wolff, D.: Low temperature properties of rubber seals. KGK—Kautsch. Gummi. Kunstst. 64, 52–55 (2011)Google Scholar
  6. 6.
    Jaunich, M., Probst, U., Schulz, S., Wolff, D., Stark, W.: Elastomere—Untersuchung des Tieftemperaturverhaltens im Dichtungseinsatz. In: Berger, K.-F., Kiefer, S. (eds.) Dichtungstechnik Jahrbuch 2014. ISGATEC, Mannheim (2013), pp. 82–91Google Scholar
  7. 7.
    Jaunich, M., Stark, W., Wolff, D.: A new method to evaluate the low temperature function of rubber sealing materials. Polym. Test. 29, 815–823 (2010)CrossRefGoogle Scholar
  8. 8.
    ISO 815-2 (2014): Rubber vulcanized or thermoplastic—Determination of compression set—Part 2: At low temperaturesGoogle Scholar
  9. 9.
    Jaunich, M., Stark, W., Wolff, D.: Comparison of low temperature properties of different elastomer materials investigated by a new method for compression set measurement. Polym. Test. 31, 987–992 (2012)CrossRefGoogle Scholar
  10. 10.
    Jaunich, M., Wolff, D., Stark, W.: Low temperature properties of rubber seals—Results of component tests. KGK—Kautsch. Gummi Kunstst. 66, 26–30 (2013)Google Scholar
  11. 11.
    Hofmann, W., Gupta, B.H. (eds.): Handbuch der Kautschuk-Technologie. Dr. Gupta Verlag, Ratingen (2001)Google Scholar
  12. 12.
    Ehrenstein, G.W., Pongratz, S.: Beständigkeit von Kunststoffen, Vol. 1. Carl Hanser, Munich (2007)CrossRefGoogle Scholar
  13. 13.
    ISO 188 (2011): Rubber, vulcanized or thermoplastic—Accelerated ageing and heat resistance testsGoogle Scholar
  14. 14.
    Celina, M., Gillen, K.T., Assink, R.A.: Accelerated aging and lifetime prediction: review of non-Arrhenius behaviour due to two competing processes. Polym. Degrad. Stab. 90, 395–404 (2005)CrossRefGoogle Scholar
  15. 15.
    Wise, J., Gillen, K.T., Clough, R.L.: An ultrasensitive technique for testing the arrhenius extrapolation assumption for thermally aged elastomers. Polym. Degrad. Stab. 49, 403–418 (1995)CrossRefGoogle Scholar
  16. 16.
    Gillen, K.T., Clough, R.L.: Polymer aging insights available from modulus profiling data. Polym. Eng. Sci. 29, 29–35 (1989)CrossRefGoogle Scholar
  17. 17.
    Kumar, A., Commereuc, S., Verney, V.: Ageing of elastomers: a molecular approach based on rheological characterization. Polym. Degrad. Stab. 85, 751–757 (2004)CrossRefGoogle Scholar
  18. 18.
    ISO 815-1 (2014): Rubber, vulcanized or thermoplastic—Determination of compression set—Part 1: At ambient or elevated temperaturesGoogle Scholar
  19. 19.
    Arrhenius, S.: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889)Google Scholar
  20. 20.
    ISO 11346 (2014): Rubber, vulcanized or thermoplastic—Estimation of life-time and maximum temperature of useGoogle Scholar
  21. 21.
    Ferry, J.D.: Viscoelastic Properties of Polymers, 3rd edn. Wiley, New York (1980)Google Scholar
  22. 22.
    Gillen, K., Wise, J., Celina, M., Clough, R.: Evidence that Arrhenius high-temperature aging behavior for an EPDM O-ring does not extrapolate to lower temperatures. In.: Sandia National Laboratories. Albuquerque (1997), 5 pagesGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Jaunich
    • 1
  • A. Kömmling
    • 1
  • D. Wolff
    • 1
  1. 1.BAM—Federal Institute for Material Research and TestingBerlinGermany

Personalised recommendations