Advertisement

Ageing of Polymer Materials—Testing, Modelling and Simulation Considering Diffusion

  • H. Baaser
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

The article shows the basics and the fundamental procedure for solving nested calculations of a multistage sequence, taking the example of a compressed O-ring seal influenced by diffusion processes and the ageing of the elastomer component. The mathematical structure of the descriptive equation of diffusion is the same as that of heat transfer. On the other hand, there is the structural-mechanical task for the calculation of mechanical equilibrium. A staggered algorithm solves the referenced problems of “diffusion” and “mechanical equilibrium” independently of each other and takes the results of the other problem as an initial condition. This enables stable solutions of multi-field problems to be achieved which are also dominated by different time scales and processes. We also discuss how to obtain suitable parameters for simulation.

Notes

Acknowledgements

The author gratefully acknowledges the fruitful discussions and support within the CAE and testing department of FNT, namely to Steffen Bohrmann, Christian Gross, Volkmar Mehling, Christian Ziegler.

References

  1. 1.
    Mehling, V., Baaser, H.: Simulation of self-heating of dynamically loaded elastomer components. In: Heinrich, G., Kaliske, M., Lion, A., Reese, S. (eds.) Constitutive Models for Rubber VI. CRC Press, Boca Raton (2009), pp. 119–124CrossRefGoogle Scholar
  2. 2.
    Achenbach, M.: Sichere Dichtungen—Alterungsmodell für Gummi. NAFEMS-Magazin 18, 64–78 (2011)Google Scholar
  3. 3.
    Achenbach, M.: Service life of seals—Numerical simulation in sealing technology enhances prognoses. Comput. Mater. Sci. 19, 213–222 (2000)CrossRefGoogle Scholar
  4. 4.
    Baaser, H., Gross, C.: Temperature dependent diffusion processes treated by finite elements. In: 10th Rubber Fall Kolloquium (Hanover, 07.–09.11.2012). Deutsches Institut für Kautschuktechnologie, Hanover (2012)Google Scholar
  5. 5.
    Baaser, H., Ziegler, C.: Simulation von Setz- und Relaxationsvorgängen von Elastomer-bauteilen mit Hilfe des mehrachsig formulierten Freudenberg-Alterungsmodells. in: Proceedings of the 7th Kautschuk-Herbst-Kolloquium (Hanover, 08.–11.11.2006). Deutsches Institut für Kautschuktechnologie, Hanover (2006), pp. 393–406Google Scholar
  6. 6.
    Kautz, S., Giese, U.: Characterisation of diffusion limited ageing processes of rubbers. In: Deutsche Kautschuk-Tagung (Nuremberg, 02.–05.06.2012). Deutsche Kautschuk-Gesell-schaft, Nuremberg (2012), University SessionGoogle Scholar
  7. 7.
    Steinke, L., Weltin, U., Flamm, M., Lion, A., Celina, M.: Numerical analysis of the heterogeneous ageing of rubber products. In: Jerrams, S., Murphy, N. (eds.) Constitutive Models for Rubber VII. CRC Press, Boca Raton (2011), pp. 155–160CrossRefGoogle Scholar
  8. 8.
    Green, M.S., Tobolsky, A.V.: A new approach to the theory of relaxing polymeric media. Journal of Chemical Physics 14, 80–92 (1946)CrossRefGoogle Scholar
  9. 9.
    Tobolsky, A. V.: Properties and Structures of Polymers. Wiley Series on the Science and Technology of Materials, Vol. 2. Wiley, New York (1960)Google Scholar
  10. 10.
    Beckmann, W.: Gasdurchlässigkeit von Elastomeren. KGK—Kautsch. Gummi Kunstst. 44, 323–329 (1991)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • H. Baaser
    • 1
    • 2
  1. 1.Freudenberg Technology Innovation FTIWeinheimGermany
  2. 2.Professor for Engineering Mechanics & FEMUniversity of Applied Sciences BingenBingen am RheinGermany

Personalised recommendations