Advertisement

Hygrothermal Ageing of Injection-Moulded PA6/GF Materials Considering Automotive Requirements

  • T. Illing
  • M. Schoßig
  • C. Bierögel
  • B. Langer
  • W. Grellmann
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

Short-glass fibre-reinforced polyamide 6 (PA6/GF) materials have been used for many decades successfully in the automotive industry, especially for components in exterior and interior area. Due to the required product qualification testing in the automotive field, components are exposed to, among others, a hygrothermal stress of 1000 h or more during the development phase. This work aims to contribute to enhanced understanding of the mechanical properties of stiffness, tensile strength, hardness and fracture toughness of short-glass fibre-reinforced polyamide 6 materials at hygrothermal aging. The results show a decrease in properties, which is more characterised by the absorption of moisture and less than by other aging processes.

References

  1. 1.
    Becker, G.W., Braun, D.: Kunststoff-Handbuch: 3. Thermoplaste, 4. Polyamide. Carl Hanser, Munich (1998)Google Scholar
  2. 2.
    Kohan, M.I.: Nylon Plastics Handbook. Carl Hanser, Munich (1995)Google Scholar
  3. 3.
    Hassan, A., Salleh, N.M., Yahya, R., Sheikh, M.: Fiber length, thermal, mechanical, and dynamic mechanical properties of injection-molded glass-fiber/polyamide 6,6: Plasticization effect. J. Reinf. Plast. Compos. 30, 488–498 (2011)CrossRefGoogle Scholar
  4. 4.
    Thomason, J.: The influence of fibre length, diameter and concentration on the modulus of glass fibre reinforced polyamide 6,6. Compos. A Appl. Sci. Manuf. 39, 1732–1738 (2008)CrossRefGoogle Scholar
  5. 5.
    Thomason, J.: Micromechanical parameters from macromechanical measurements on glass reinforced polyamide 6,6. Compos. Sci. Technol. 61, 2007–2016 (2001)CrossRefGoogle Scholar
  6. 6.
    Thomason, J.: The influence of fibre properties of the performance of glass-fibre-reinforced polyamide 6,6. Compos. Sci. Technol. 59, 2315–2328 (1999)CrossRefGoogle Scholar
  7. 7.
    Bergeret, A., Ferry, L., Ienny, P.: Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in a hygrothermal environment. Polym. Degrad. Stab. 94, 1315–1324 (2009)CrossRefGoogle Scholar
  8. 8.
    Jia, N., Kagan, V.A.: Effects of time and temperature on the tension–tension fatigue behavior of short fiber reinforced polyamides. Polym. Compos. 19, 408–414 (1998)CrossRefGoogle Scholar
  9. 9.
    Mouhmid, B., Imad, A., Benseddiq, N., Benmedakhène, S., Maazouz, A.: A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation. Polym. Test. 25, 544–552 (2006)CrossRefGoogle Scholar
  10. 10.
    Ferreno, D., Carrascal, I., Ruiz, E., Casado, J.: Characterisation by means of a finite element model of the influence of moisture content on the mechanical and fracture properties of the polyamide 6 reinforced with short glass fibre. Polym. Testing 30, 420–428 (2011)CrossRefGoogle Scholar
  11. 11.
    Langer, B.: Bruchmechanische Bewertung von Polyamid-Werkstoffen. Logos-Verlag, Berlin (1998)Google Scholar
  12. 12.
    Ehrenstein, G.W., Pongratz, S.: Beständigkeit von Kunststoffen. Carl Hanser, Munich (2007)Google Scholar
  13. 13.
    DIN 50035 (2012): Begriffe auf dem Gebiet der Alterung von Materialien—Polymere Werk-stoffeGoogle Scholar
  14. 14.
    El-Rafey, E., Kandill, S., Abdelkader, A.: Auslagern beeinflusst Eigenspannungen. Kunst-stoffe 81, 710–711 (1991)Google Scholar
  15. 15.
    Illing, T., Schoßig, M., Bierögel, C., Grellmann, W.: Influence of hygrothermal aging on dimensional stability of thin injection-molded short glass-fiber reinforced PA6. J. Appl. Polym. Sci. 132, 42245 (2015)CrossRefGoogle Scholar
  16. 16.
    Illing, T., Gotzig, H., Schoßig, M., Bierögel, C., Grellmann, W.: Influence of hygrothermal aging on tensile strength and poisson ratio of thin injection-molded short glass fiber reinforced PA6. Fibers Issue 4 (2016) No. 17 (10 pages)Google Scholar
  17. 17.
    ISO 3167 (2014): Plastics—Multipurpose test specimensGoogle Scholar
  18. 18.
    DIN EN 60068-2-2 (2008): Environmental testing—Part 2-2: Tests—Test B: Dry heatGoogle Scholar
  19. 19.
    DIN EN 60068-2-78 (2014): Environmental testing—Part 2-78: Tests—Test Cab: Damp heat, steady stateGoogle Scholar
  20. 20.
    DIN EN 60068-2-1 (2008): Environmental testing—Part 2-1: Tests—Test A: ColdGoogle Scholar
  21. 21.
    ISO 527-1 (2012): Plastics—Determination of tensile properties—Part 1: General principlesGoogle Scholar
  22. 22.
    ISO 527-2 (2012): Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plasticsGoogle Scholar
  23. 23.
    ISO 2039-1 (2001): Plastics—Determination of hardness—Part 1: Ball indentation methodGoogle Scholar
  24. 24.
    Grellmann, W., Seidler, S., Hesse, W.: Testing of plastics—Instrumented Charpy impact test (ICIT)—Procedure for determining the crack resistance behaviour using the instrumented impact test (MPK-ICIT): Part I: Determination of characteristic fracture mechanics parameters for resistance against unstable crack propagation; Part II: Determination of characteristic fracture mechanics parameters for resistance against stable crack propagation. Merseburg (2016), http://wiki.polymerservice-merseburg.de/index.php/MPK-Prozedur_MPK-IKBV_englisch
  25. 25.
    ISO 11357-1 (2009): Plastics—Differential scanning calorimetry (DSC)—Part 1: General principlesGoogle Scholar
  26. 26.
    Precision of 3D CT-Systems. GE Sensing & Inspection Technologies GmbH, Wunstdorf (2014). http://www.armgate.lv/assets/upload/userfiles/files/GEIT-31105_EN_Precision%20Comparison_CT_KMM%2009_10_low.pdf. 1 June 2017
  27. 27.
    Reinhart, C.: Direkte CT-Datenanalyse mit VGStudio Max 2.0. In: Kastner, J. (ed.) Industrielle Computertomografie Tagung 2008. Reihe: Messtechnik und Sensorik, Shaker Verlag, Herzogenrath (2008)Google Scholar
  28. 28.
    Phoenix nanotom m. GE Sensing & Inspection Technologies GmbH, Wunstdorf (2013). http://www.ge-mcs.com/download/x-ray/phoenix-x-ray/nanotom_m_s_DE_GEIT-0113.pdf. 1 June 2017
  29. 29.
    Advani, S.G., Tucker III, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31, 751–784 (1987)CrossRefGoogle Scholar
  30. 30.
    DIN 55672-1 (2016): Gelpermeationschromatographie (GPC)Teil 1: Tetrahydrofuran (THF) als ElutionsmittelGoogle Scholar
  31. 31.
    Wyzgoski, M., O’Gara, J.F., Novak, G.E.: Predicting the tensile strength of short glass fiber reinforced injection molded plastics. In: Proceedings of the 10th Annual SPE Automotive Composites Conference & Exhibition, ACCE, Troy, 15–16 Sept 2010. Society of Plastics Engineers, Brookfield (2010), pp. 810–832Google Scholar
  32. 32.
    Fu, S.-Y., Lauke, B.: Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos. Sci. Technol. 56, 1179–1190 (1996)CrossRefGoogle Scholar
  33. 33.
    Bernasconi, A., Davoli, P., Basile, A., Filippi, A.: Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. Int. J. Fatigue 29, 199–208 (2007)CrossRefGoogle Scholar
  34. 34.
    Johannaber, F., Michaeli, W.: Handbuch Spritzgießen. Carl Hanser, Munich (2004)CrossRefGoogle Scholar
  35. 35.
    Bay, R.S., Tucker, C.L.: Fiber orientation in simple injection moldings. Part I: theory and numerical methods. Polym. Compos. 13, 317–331 (1992)CrossRefGoogle Scholar
  36. 36.
    Bay, R.S., Tucker, C.L.: Fiber orientation in simple injection moldings. Part II: experimental results. Polym. Compos. 13, 332–341 (1992)CrossRefGoogle Scholar
  37. 37.
    Folgar, F., Tucker, C.L.: Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Compos. 3, 98–119 (1984)CrossRefGoogle Scholar
  38. 38.
    Wang, J., Jin, X.: Comparison of recent fiber orientation models in autodesk moldflow insight simulations with measured fiber orientation data. In: Proceedings of the Polymer Processing Society 26th Annual Meeting, PPS-26, Banff, 04–08 July 2010. Polymer Processing Society, Banff (2010), 6 pagesGoogle Scholar
  39. 39.
    McNally, D.: Short fiber orientation and its effects on the properties of thermoplastic composite materials. Polym. Plast. Technol. Eng. 8, 101–154 (1977)CrossRefGoogle Scholar
  40. 40.
    Bernasconi, A., Cosmi, F., Dreossi, D.: Local anisotropy analysis of injection moulded fibre reinforced polymer composites. Compos. Sci Technol. 68, 2574–2581 (2008)CrossRefGoogle Scholar
  41. 41.
    Toll, S., Andersson, P.O.: Microstructure of long- and short-fiber reinforced injection molded polyamide. Polym. Compos. 14, 116–125 (1993)CrossRefGoogle Scholar
  42. 42.
    Thomason, J.L.: Structure–property relationships in glass-reinforced polyamide, Part 3: Effects of hydrolysis ageing on the dimensional stability and performance of short glass–fiber-reinforced polyamide 66. Polym. Compos. 28, 344–354 (2007)CrossRefGoogle Scholar
  43. 43.
    Jia, N., Fraenkel, H.A., Kagan, V.A.: Effects of moisture conditioning methods on mechanical properties of injection molded nylon 6. J. Reinf. Plast. Compos. 23, 729–737 (2004)CrossRefGoogle Scholar
  44. 44.
    Brandrup, J., Immergut, E.H., Grulke, E.A.: Polymer Handbook. Wiley, New York (1999)Google Scholar
  45. 45.
    Grellmann, W., Seidler, S. (eds.): Kunststoffprüfung, 3rd edn. Carl Hanser, Munich (2015)Google Scholar
  46. 46.
    Illing, T.: Bewertung von mechanischen und thermischen Eigenschaften glasfaserverstärkter Polyamid-Werkstoffe unter besonderer Berücksichtigung des Alterungsverhaltens von Bauteilen in der Automobilindustrie. Ph.D. thesis, Martin-Luther-University Halle-Wittenberg, Halle (2015)Google Scholar
  47. 47.
    Ehrenstein, G.W., Riedel, G., Trawiel, P.: Praxis der thermischen Analyse von Kunststoffen. Carl Hanser, Munich (2003)Google Scholar
  48. 48.
    Xenopoulos, A., Wunderlich, B.: Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides. J. Polym. Sci., Part B: Polym. Phys. 28, 2271–2290 (1990)CrossRefGoogle Scholar
  49. 49.
    Shu, Y., Ye, L., Yang, T.: Study on the long-term thermal-oxidative aging behavior of polyamide 6. J. Appl. Polym. Sci. 110, 945–957 (2008)CrossRefGoogle Scholar
  50. 50.
    Valentin, D., Paray, F., Guetta, B.: The hygrothermal behaviour of glass fibre reinforced PA66 composites: A study of the effect of water absorption on their mechanical properties. J. Mater. Sci. 22, 46–56 (1987)CrossRefGoogle Scholar
  51. 51.
    Hassan, A., Rahman, N.A., Yahya, R.: Moisture absorption effect on thermal, dynamic mechanical and mechanical properties of injection-molded short glass-fiber/polyamide 6, 6 composites. Fibers Polym. 13, 899–906 (2012)CrossRefGoogle Scholar
  52. 52.
    Yue, C., Chan, C.: Assessment of moisture content in nylon using differential scanning calorimetry. Polym. Test. 10, 189–194 (1991)CrossRefGoogle Scholar
  53. 53.
    Bergeret, A., Pires, I., Foulc, M., Abadie, B., Ferry, L., Crespy, A.: The hygrothermal behaviour of glass-fibre-reinforced thermoplastic composites: a prediction of the composite lifetime. Polym. Test. 20, 753–763 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • T. Illing
    • 1
  • M. Schoßig
    • 2
  • C. Bierögel
    • 2
    • 3
  • B. Langer
    • 2
    • 4
  • W. Grellmann
    • 2
    • 3
  1. 1.Valeo Schalter und Sensoren GmbHBietigheim-BissingenGermany
  2. 2.Polymer Service GmbH MerseburgMerseburgGermany
  3. 3.Centre of EngineeringMartin Luther University Halle-WittenbergHalle/SaaleGermany
  4. 4.Department of Engineering and Natural SciencesUniversity of Applied Sciences MerseburgMerseburgGermany

Personalised recommendations