Characterisation of the Deformation and Fracture Behaviour of Elastomers Under Biaxial Deformation

  • K. Schneider
  • R. Calabrò
  • R. Lombardi
  • C. Kipscholl
  • T. Horst
  • A. Schulze
  • S. Dedova
  • G. Heinrich
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


A new biaxial testing machine from COESFELD is presented, which enables essential new and more comprehensive opportunities for non-destructive and fracture mechanical testing of elastomers, mainly under dynamical load. Some possible applications are described in detail.


  1. 1.
    Biax Tester for Elastomer Material: Information brochure of Coesfeld GmbH & Co. KG., (01.06.2017)
  2. 2.
    Schneider, K., Calabrò, R., Lombardi, R., Kipscholl, C., Horst, T., Schulze, A., Heinrich, G.: Charakterisierung und Versagensverhalten von Elastomeren bei dynamischer biaxialer Belastung. KGK–Kautsch. Gummi Kunstst. 67, 48–52 (2014)Google Scholar
  3. 3.
    Heinrich, G., Schneider, K., Calabrò, R., Lombardi, R., Kipscholl, C., Horst, T., Schulze, A., Gorelova, S.: Fracture behaviour of elastomers under dynamic biaxial loading conditions. Tire Technol. Int. 35–37 (2014)Google Scholar
  4. 4.
    Duncan, B.C.: Test Methods for Determining Hyperelastic Properties of Flexible Adhesives. NPL Report CMMT(MN)054, National Physical Laboratory, Teddington (1999)Google Scholar
  5. 5.
    Physical Testing Service: Information brochure of Axel Products Inc., (01.06.2017)
  6. 6.
    Müller, W., Pöhlandt, K.: New experiments for determining yield loci of sheet metal. J. Mater. Process. Technol. 60, 643–648 (1996)CrossRefGoogle Scholar
  7. 7.
    Kuwabara, T., Kuroda, K., Tvergaar, V., Nomura, K.: Use of abrupt strain path change for determining subsequent yield surface: Experimental study with metal sheets. Acta Materalia, 2071–2079 (2000)Google Scholar
  8. 8.
    Gozzi, J., Olsson, A., Lagerqvist, O.: Experimental investigation of the behavior of extra high strength steel. Soc. Exp. Mech. 45, 533–540 (2005)CrossRefGoogle Scholar
  9. 9.
    Yu, Y., Wan, M., Wu, X., Zhou, X.: Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J. Mater. Process. Technol. 123, 67–70 (2002)CrossRefGoogle Scholar
  10. 10.
    Kelly, D.: Problems in creep testing under biaxial stress systems. J. Strain Anal. Eng. Des. 11, 1–6 (1976)CrossRefGoogle Scholar
  11. 11.
    Demmerle, S., Boehler, J.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 41, 143–181 (1993)CrossRefGoogle Scholar
  12. 12.
    Quaak, G.: Biaxial testing of sheet metal: an experimental–numerical analysis. Master thesis, Eindhoven University of Technology, Eindhoven (2008)Google Scholar
  13. 13.
    Treloar, L.R.G.: Stress strain data for vulcanized rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944)CrossRefGoogle Scholar
  14. 14.
    Broek, D.: Elementary Engineering Fracture Mechanics. Martinus Nijhoff Publishers, Dordrecht (1986)CrossRefGoogle Scholar
  15. 15.
    Rivlin, R.S., Thomas, A.G.: Rupture of rubber. I. Characteristic energy of tearing. J. Polym. Sci. 10, 291–318 (1953)CrossRefGoogle Scholar
  16. 16.
    Stoček, R., Heinrich, G., Gehde, M., Kipscholl, R.: Analysis of dynamic crack propagation in elastomers by simultaneous tensile- and pure-shear-mode testing. In: Grellmann, W., Heinrich, G., Kaliske, M., Klüppel, M., Schneider, K., Vilgis, T.A. (eds.) Fracture Mechanics and Statistical Mechanics of Reinforced Elastomeric Blends. Springer, Berlin (2013), pp. 269–301Google Scholar
  17. 17.
    Stoček, R.: Dynamische Rissausbreitung in Elastomerwerkstoffen. PhD thesis, Technische Universität Chemnitz, Chemnitz (2012)Google Scholar
  18. 18.
    Ogden, R.W.: Non-linear Elastic Deformation. Dover Publications, Mineola New York (1984)Google Scholar
  19. 19.
    Kaliske, M., Heinrich, G.: An extended tube-model for rubber elasticity: Statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72, 602–632 (1999)CrossRefGoogle Scholar
  20. 20.
    Klüppel, M., Schramm, J.A.: Generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol. Theory Simul. 9, 742–754 (2000)CrossRefGoogle Scholar
  21. 21.
    Rice, J.R., Rosengren, G.F.: Plane strain deformation near a crack in a power law hardening material. J. Mech. Phys. Solids 16, 1–12 (1968)CrossRefGoogle Scholar
  22. 22.
    Maugin, G.A.: Material Inhomogeneities in Elasticity. Applied Mathematics and Mathematical Computation, Vol. 3. Chapman & Hall/CRC, Boca Raton (1993)Google Scholar
  23. 23.
    Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. General concepts; Part II. Applications. J. Non-Equilibr. Thermodyn. 19, 217–249, 250–289 (1994)Google Scholar
  24. 24.
    Maugin, G.: Material forces: concepts and applications. Appl. Mech. Rev. 48, 213–245 (1995)CrossRefGoogle Scholar
  25. 25.
    Behnke, R., Dal, H., Geißler, G., Näser, B., Netzker, C., Kaliske, M.: Macroscopical modeling and numerical simulation for the characterization of crack and durability properties of particle-reinforced elastomers. In: Grellmann, W., Heinrich, G., Kaliske, M., Klüppel, M., Schneider, K., Vilgis, T.A. (eds.) Fracture Mechanics and Statistical Mechanics of Reinforced Elastomeric Blends, pp. 167–226. Springer, Berlin (2013)CrossRefGoogle Scholar
  26. 26.
    Schulze, A.: Analyse der Verzerrungsfelder gekerbter Elastomerproben unter ein- und zweiachsiger äußerer Belastung. Diploma thesis, Technische Universität Chemnitz, Chemnitz (2012), 269–301Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • K. Schneider
    • 1
  • R. Calabrò
    • 2
  • R. Lombardi
    • 1
    • 3
    • 8
  • C. Kipscholl
    • 4
  • T. Horst
    • 6
  • A. Schulze
    • 1
    • 7
  • S. Dedova
    • 1
    • 5
  • G. Heinrich
    • 1
    • 5
  1. 1.Leibniz Institute for Polymer Research Dresden e.V.DresdenGermany
  2. 2.Department of Chemistry, Materials and Chemical EngineeringPolytechnic University of MilanMilanItaly
  3. 3.University of Naples Federico IINaplesItaly
  4. 4.Coesfeld GmbH & Co. KGDortmundGermany
  5. 5.Dresden University of TechnologyDresdenGermany
  6. 6.Faculty of Automobile and Mechanical EngineeringUniversity of Applied Sciences ZwickauZwickauGermany
  7. 7.Chemnitz University of TechnologyChemnitzGermany
  8. 8.Bridgestone Technical Center EuropeRomeItaly

Personalised recommendations