Advertisement

Morphology and Fatigue Behaviour of Short-Glass Fibre-Reinforced Polypropylene

  • M. Palmstingl
  • D. Salaberger
  • T. Koch
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

The fatigue bahaviour of short-glass fibre-reinforced polypropylene was investigated in dependence on the fibre orientation. For that, a special plate geometry was developed which allows to exclude the effect of machining and leads to original injection surfaces at least in the region of the main (slightly concentrated) load. This “original” surface matches the surface situation of the injection moulded consumer parts. Furthermore, the plates consist of a notch region and a knit line. Morphology analysis can be done by sectioning and stereological principles or by X-ray computed tomography. The fatigue strength shows a strong correlation to fibre orientation, but the samples taken from the knit line and the notch region do not follow this correlation. In these regions the situations are more complex. The application of different methods for the characterization of the evolution of damage (development of dissipated energy, strain, normalized modulus, temperature) does not give a clear indication of damage; there are no clear signs of damage until shortly before the fracture. High-speed camera in combination with digital image correlation can give information on local strain and therefore on the localized occurrence of damage at a relatively early stage of fatigue life.

References

  1. 1.
    Bierögel, C., Grellmann, W.: Fatigue loading. In: Grellmann, W., Seidler, S. (eds.) Landolt-Börnstein, New Series Volume VIII/6A3 Mechanical and Thermomechanical Properties of Polymers. Springer, Berlin (2014), Chapter 4.5, pp. 241–285Google Scholar
  2. 2.
    Mortazavian, S., Fatemi, A.: Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review. Int. J. Fatigue 70, 297–321 (2015)CrossRefGoogle Scholar
  3. 3.
    Zhou, Y., Mallick, P.K.: Fatigue performance of an injection-molded short E-glass fiber-reinforced polyamide 6,6. I. Effects of orientation, holes, and weld line. Polym. Compos. 27, 230–237 (2006)CrossRefGoogle Scholar
  4. 4.
    Cosmi, F., Bernasconi, A.: Fatigue Behaviour of Short Fibre Reinforced Polyamide: Morphological and Numerical Analysis of Fibre Orientation Effects. Forni di Sopra (2010), pp. 239–242Google Scholar
  5. 5.
    Bernasconi, A., Davoli, P., Basile, A., Filippi, A.: Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. Int. J. Fatigue 29, 199–208 (2007)CrossRefGoogle Scholar
  6. 6.
    Arif, M.F., Saintier, N., Meraghni, F., Fitoussi, J., Chemisky, Y., Robert, G.: Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Compos. B 61, 55–65 (2014)CrossRefGoogle Scholar
  7. 7.
    Esmaeillou, B., Fitoussi, J., Lucas, A., Tcharkhtchi, A.: Multi-scale experimental analysis of the tension-tension fatigue behavior of a short glass fiber reinforced polyamide composite. Procedia Eng. 10, 2117–2122 (2011)CrossRefGoogle Scholar
  8. 8.
    Bernasconi, A., Cosmi, F., Taylor, D.: Analysis of the fatigue properties of different specimens of a 10% by weight short glass fibre reinforced polyamide 6.6. Polym. Test. 40, 149–155 (2014)CrossRefGoogle Scholar
  9. 9.
    Bernasconi, A., Conrado, E., Hine, P.: An experimental investigation of the combined influence of notch size and fibre orientation on the fatigue strength of a short glass fibre reinforced polyamide 6. Polym. Test. 47, 12–21 (2015)Google Scholar
  10. 10.
    Launay, A., Marco, Y., Maitournam, M.H., Raoult, I., Szmytka, F.: Cyclic behavior of short glass fiber reinforced polyamide for fatigue life prediction of automotive components. Procedia Eng. 2, 901–910 (2010)CrossRefGoogle Scholar
  11. 11.
    Pegoretti, A., Riccò, T.: Fatigue crack propagation in polypropylene reinforced with short glass fibres. Compos. Sci. Technol. 59, 1055–1062 (1999)CrossRefGoogle Scholar
  12. 12.
    Meneghetti, G., Ricotta, M., Lucchetta, G., Carmignato, S.: An hysteresis energy-based synthesis of fully reversed axial fatigue behaviour of different polypropylene composites. Compos. B 65, 17–25 (2014)CrossRefGoogle Scholar
  13. 13.
    Pegoretti, A., Ricco, T.: Crack growth in discontinuous glass fibre reinforced polypropylene under dynamic and static loading conditions. Compos. A 33, 1539–1547 (2002)CrossRefGoogle Scholar
  14. 14.
    Palmstingl, M., Koch, T., Salaberger, D., Paier, T.: Morphological impact on the fatigue behaviour of short fibre reinforced polypropylene. Mater. Sci. Forum 825–826, 830–837 (2015)CrossRefGoogle Scholar
  15. 15.
    Guild, F.J., Summerscales, J.: Microstructural image analysis applied to fibre composite materials: a review. Composites 24, 383–393 (1993)CrossRefGoogle Scholar
  16. 16.
    Salaberger, D., Kannappan, K.A., Kastner, J., Reussner, J., Auinger, T.: Evaluation of computed tomography data from fibre reinforced polymers to determine fibre length distribution. Int. Polym. Proc. 26, 283–291 (2011)CrossRefGoogle Scholar
  17. 17.
    Bay, R.S., Tucker III, C.L.: Stereological measurement and error estimates for three-dimensional fiber orientation. Polym. Eng. Sci. 32, 240–253 (1992)CrossRefGoogle Scholar
  18. 18.
    Bechtold, G., Gaffney, K.M., Botsis, J., Friedrich, K.: Fibre orientation in an injection moulded specimen by ultrasonic backscattering. Compos. Part A: Appl. Sci. Manuf. 29A, 743–748 (1998)CrossRefGoogle Scholar
  19. 19.
    Clarke, A.R., Archenhold, G., Davidson, N.C.: A novel technique for determining the 3D spatial distribution of glass fibres in polymer composites. Compos. Sci. Technol. 55, 75–91 (1995)CrossRefGoogle Scholar
  20. 20.
    Eberhardt, C., Clarke, A.: Fibre-orientation measurements in short-glass-fibre composites. Part I: automated, high-angular-resolution measurement by confocal microscopy. Compos. Sci. Technol. 61, 1389–1400 (2001)CrossRefGoogle Scholar
  21. 21.
    Yaguchi, H., Hojo, H., Lee, D.G., Kim, E.G.: Measurement of planar orientation of fibers for reinforced thermoplastics using image processing. Int. Polym. Proc. 10, 262–269 (1995)CrossRefGoogle Scholar
  22. 22.
    Kim, E.G., Park, J.K., Job, S.H.: A study on fiber orientation during the injection molding of fiber-reinforced polymeric composites (comparison between image processing results and numerical simulation). J. Mater. Process. Technol. 111, 225–232 (2001)CrossRefGoogle Scholar
  23. 23.
    Fakirov, S., Fakirova, C.: Direct determination of the orientation of short glass fibers in an injection-molded poly(ethylene terephthalate) system. Polym. Compos. 6, 41–46 (1985)CrossRefGoogle Scholar
  24. 24.
    Fisher, G., Eyerer, P.: Measuring spatial orientation of short fiber reinforced thermoplastics by image analysis. Polym. Compos. 9, 297–304 (1988)CrossRefGoogle Scholar
  25. 25.
    O’Connell, P.A., Duckett, R.A.: Measurements of fibre orientation in short-fibre-reinforced thermoplastics. Compos. Sci. Technol. 42, 329–347 (1991)CrossRefGoogle Scholar
  26. 26.
    Vincent, M., Giroud, T., Clarke, A., Eberhardt, C.: Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics. Polymer 46, 6719–6725 (2005)CrossRefGoogle Scholar
  27. 27.
    Mönnich, S., Glöckner, R., Becker, F.: Analysis of fibre orientation using μCT data. In: Proceedings of 8th European LS-DYNA Conference (Strasbourg, 23/24.05.2011). Strasbourg (2011), 15 pagesGoogle Scholar
  28. 28.
    Bernasconi, A., Cosmi, F., Hine, P.J.: Analysis of fibre orientation distribution in short fibre reinforced polymers: a comparison between optical and tomographic methods. Compos. Sci. Technol. 72, 2002–2008 (2012)CrossRefGoogle Scholar
  29. 29.
    Eberhardt, C., Clarke, A., Vincent, M., Giroud, T., Flouret, S.: Fibre-orientation measurements in short-glass-fibre composites—II: A quantitative error estimate of the 2D image analysis technique. Compos. Sci. Technol. 61, 1961–1974 (2001)CrossRefGoogle Scholar
  30. 30.
    Fu, S.-Y., Mai, Y.-W., Ching, E.C.-Y., Li, R.K.Y.: Correction of the measurement of fiber length of short fiber reinforced thermoplastics. Compos. A 33, 1549–1555 (2002)CrossRefGoogle Scholar
  31. 31.
    Pesendorfer, H.: Morphologische Analyse von Faserverbunden mittels Schliffverfahren. Master thesis, TU Wien, Vienna (2015)Google Scholar
  32. 32.
    Advani, S.G., Tucker III, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31, 751–784 (1987)CrossRefGoogle Scholar
  33. 33.
    Mlekusch, B., Lehner, E.A., Geymayer, W.: Fibre orientation in short-fibre-reinforced thermoplastics I. Contrast enhancement for image analysis. Compos. Sci. Technol. 59, 543–545 (1999)CrossRefGoogle Scholar
  34. 34.
    Vélez-García, G.M., Wapperom, P., Kunc, V., Baird, D.G., Zink-Sharp, A.: Sample preparation and image acquisition using optical-reflective microscopy in the measurement of fiber orientation in thermoplastic composites. J. Microsc. 248, 23–33 (2012)CrossRefGoogle Scholar
  35. 35.
    Zhu, Y.T., Blumenthal, W.R., Lowe, T.C.: Determination of non-symmetric 3-D fiber-orientation distribution and average fiber length in short-fiber composites. J. Compos. Mater. 31, 1287–1302 (1997)CrossRefGoogle Scholar
  36. 36.
    Zak, G., Haberer, M., Park, C.B., Benhabib, B.: Estimation of average fibre length in short-fibre composites by a two-section method. Compos. Sci. Technol. 60, 1763–1772 (2000)CrossRefGoogle Scholar
  37. 37.
    Thomason, J.L.: The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos. A Appl. Sci. Manuf. 33, 1641–1652 (2002)CrossRefGoogle Scholar
  38. 38.
    Bernasconi, A., Cosmi, F., Dreossi, D.: Local anisotropy analysis of injection moulded fibre reinforced polymer composites. Compos. Sci. Technol. 68, 2574–2581 (2008)CrossRefGoogle Scholar
  39. 39.
    Köpplmayr, T., Milosavljevic, I., Aigner, M., Hasslacher, R., Plank, B., Salaberger, D., Miethlinger, J.: Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene. Polym. Test. 32, 535–544 (2013)CrossRefGoogle Scholar
  40. 40.
    Gupta, V.B., Mittal, R.K., Sharma, P.K., Menning, G., Wolters, J.: Some studies on glass fiber-reinforced polypropylene. Part I: Reduction in fiber length during processing. Polym. Compos. 10, 8–15 (1989)CrossRefGoogle Scholar
  41. 41.
    Oberbach, K.: Untersuchung des Dauerschwingverhaltens. In: Carlowitz, B. (Ed.): Band 1. Die Kunststoffe. Chemie, Physik, Technologie. In: Becker, G. W., Braun D. (Eds.): Kunststoff-Handbuch. Carl Hanser, Munich (1990), Chapter 5.3.3, pp. 659–686Google Scholar
  42. 42.
    Höninger, H.: Fatigue behavior. In: Grellmann, W., Seidler, S. (eds.): Polymer Testing, 2nd edn. Carl Hanser, Munich (2013), Chapter 4.5, pp. 161–170Google Scholar
  43. 43.
    Domininghaus, H.: Plastics for Engineers. Materials, Properties, Applications. Carl Hanser, Munich (1993)Google Scholar
  44. 44.
    Hertzberg, R.W., Manson, J.A., Skibo, M.: Frequency sensitivity of fatigue processes in polymeric solids. Polym. Eng. Sci. 15, 252–260 (1975)CrossRefGoogle Scholar
  45. 45.
    Pegoretti, A., Ricco, T.: Crack growth in discontinuous glass fibre reinforced polypropylene under dynamic and static loading conditions. Compos. A 33, 1539–1547 (2002)CrossRefGoogle Scholar
  46. 46.
    Kurashiki, K., Ni, Q.-Q., Maesaka, T., Iwamoto, M.: A study on evaluation of fatigue damage of GFRP by infrared thermography. 1st report. Fatigue temperature rise curves of GFRP. Trans. Jpn. Soc. Mech. Eng. A 66, 960–965 (2000)Google Scholar
  47. 47.
    Katunin, A.: Thermal fatigue of polymeric composites under repeated loading. J. Reinf. Plast. Compos. 31, 1037–1044 (2012)CrossRefGoogle Scholar
  48. 48.
    Ehrenstein, G.W.: Faserverbund-Kunststoffe. Werkstoffe, Verarbeitung, Eigenschaften. Carl Hanser, Munich (2006)Google Scholar
  49. 49.
    Brighenti, R., Carpinteri, A., Scorza, D.: Micromechanical crack growth-based fatigue damage in fibrous composites. Int. J. Fatigue 82, 98–109 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Palmstingl
    • 1
  • D. Salaberger
    • 2
  • T. Koch
    • 1
  1. 1.Institute of Materials Science and Technology, Vienna University of TechnologyViennaAustria
  2. 2.University of Applied Sciences of Upper AustriaWelsAustria

Personalised recommendations