Thermal Stability and Lifetime Prediction of an Epoxide Adhesive System

  • R. Tiefenthaller
  • R. Fluch
  • B. Strauß
  • S. Hild
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


Epoxide systems, with diglycidyl ether of bisphenol A as the most popular representative, are known for their outstanding thermal stability. Nevertheless, lifetime predictions are indispensable for many applications. Therefore, the change of mechanical properties of an epoxide adhesive system was analysed. The observed embrittlement of the system could be explained and shown by chemical degradation reactions. To determine the long-term stability accelerated testing methods had to be applied: Steel panels were bonded with a thin layer of the adhesive system and aged at elevated temperatures. Lifetime predictions were based on the adhesive strength, which can be evaluated by different methods like peeling or shearing tests. The lifetime was strongly depending on the chosen parameter for the adhesive strength. However, if only the time at the high temperature was calculated, cyclic thermal loads came to the same results as constant high temperature regimes.


  1. 1.
    Nikolic, G., Zlatkovic, S., Cakic, M., Cakic, S., Lacnjevac, C., Rajic, Z.: Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors 10, 684–696 (2010)CrossRefGoogle Scholar
  2. 2.
    González, M., Cabanelas, J., Baselg, J.: Applications of FTIR on epoxy resins—Identification, monitoring the curing process, phase separation and water uptake. In: Theophanides, T. (ed.): Infrared Spectroscopy—Materials Science, Engineering and Technology. InTech, pp. 261–284 (2012)Google Scholar
  3. 3.
    Pei, Y.M., Wang, K., Zhan, M.-S., Xu, W., Ding, X.J.: Thermal-oxidative aging of DGEBA/EPN/LMPA epoxy system: Chemical structure and thermal–mechanical properties. Polym. Degrad. Stab. 96, 1179–1186 (2011)CrossRefGoogle Scholar
  4. 4.
    Li, K., Wang, K., Zhan, M.-S., Xu, W.: The change of thermal–mechanical properties and chemical structure of ambient cured DGEBA/TEPA under accelerated thermo-oxidative aging. Polym. Degrad. Stab. 98, 2340–2346 (2013)CrossRefGoogle Scholar
  5. 5.
    Pascault, J.P., Williams, R.J.: Epoxy Polymers: New Materials and Innovations. Wiley-VCH, Weinheim (2010)CrossRefGoogle Scholar
  6. 6.
    Siddiqui, N., Khan, S., Kim, J.K.: Experimental torsional shear properties of carbon fiber reinforced epoxy composites containing carbon nanotubes. Compos. Struct. 104, 230–238 (2013)CrossRefGoogle Scholar
  7. 7.
    Rahmanian, S., Suraya, A., Shazed, M., Zahari, R., Zainudin, E.: Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers. Mater. Des. 60, 34–40 (2014)CrossRefGoogle Scholar
  8. 8.
    Zahra, Y., Djouani, F., Fayolle, B., Kuntz, M., Verdu, J.: Thermo-oxidative aging of epoxy coating systems. Prog. Org. Coat. 77, 380–387 (2014)CrossRefGoogle Scholar
  9. 9.
    Damian, C., Espuche, E., Escoubes, M.: Influence of three ageing types (thermal oxidation, radiochemical and hydrolytic ageing) on the structure and gas transport properties of epoxy–amine networks. Polym. Degrad. Stab. 72, 447–458 (2001)CrossRefGoogle Scholar
  10. 10.
    Chen, J.S., Ober, C., Poliks, M., Zhang, Y., Wiesner, U., Cohen, C.: Controlled degradation of epoxy networks: Analysis of crosslink density and glass transition temperature changes in thermally reworkable thermosets. Polymer 45, 1939–1950 (2004)CrossRefGoogle Scholar
  11. 11.
    Chen, J.S., Ober, C., Poliks, M.: Characterization of thermally reworkable thermosets: Materials for environmentally friendly processing and reuse. Polymer 43, 131–139 (2002)CrossRefGoogle Scholar
  12. 12.
    Stoye, D., Freitag, W.: Lackharze: Chemie. Eigenschaften und Anwendungen. Hanser, Munich Vienna (1996)Google Scholar
  13. 13.
    Dyakonov, T., Chen, Y., Holland, K., Drbohlav, J., Burns, D., Velde, D., Seib, L., Soloski, E., Kuhn, J., Mann, P.: Stevenson, William T. K.: Thermal analysis of some aromatic amine cured model epoxy resin systems—I: Materials synthesis and characterization, cure and post-cure. Polym. Degrad. Stab. 53, 217–242 (1996)CrossRefGoogle Scholar
  14. 14.
    Fata, D.: Epoxidsysteme im Verbund mit rostfreien Stählen—Vernetzung und Alterung. Shaker, Aachen (2007)Google Scholar
  15. 15.
    Gaukler, J.: Lagerungsstabilität Vernetzung und Eigenschaften von Epoxid-Dicyan-diamid-Systemen für Nanoverbundwerkstoffe. Shaker, Aachen (2012)Google Scholar
  16. 16.
    Dao, B., Hodgkin, J., Krstina, J., Mardel, J., Tian, W.: Accelerated aging versus realistic aging in aerospace composite materials. II. Chemistry of thermal aging in a structural composite. J. Appl. Polym. Sci. 102, 3221–3232 (2006)CrossRefGoogle Scholar
  17. 17.
    Lévêque, D., Schieffer, A., Mavel, A., Maire, J.-F.: Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer–matrix composites. Compos. Sci. Technol. 65, 395–401 (2005)CrossRefGoogle Scholar
  18. 18.
    Hong, S.G.: The thermal-oxidative degradation of an epoxy adhesive on metal substrates: XPS and RAIR analyses. Polym. Degrad. Stab. 48, 211–218 (1995)CrossRefGoogle Scholar
  19. 19.
    Monney, L., Belali, R., Vebrel, J., Dubois, C., Chambaudet, A.: Photochemical degradation study of an epoxy material by IR-ATR spectroscopy. Polym. Degrad. Stab. 62, 353–359 (1998)CrossRefGoogle Scholar
  20. 20.
    Lin, S., Bulkin, B., Pearce, E.: Epoxy resins. III. application of fourier transform IR to degradation studies of epoxy systems. J. Polym. Sci.: Polym. Chem. Ed. 17, 3121–3148 (1979)Google Scholar
  21. 21.
    Anderson, B.: Thermal stability and lifetime estimates of a high temperature epoxy by T g reduction. Polym. Degrad. Stab. 98, 2375–2382 (2013)CrossRefGoogle Scholar
  22. 22.
    Rasoldier, N., Colin, X., Verdu, J., Bocquet, M., Olivier, L., Chocinski-Arnault, L., Lafarie-Frenot, M.: Model systems for thermo-oxidised epoxy composite matrices. Compos. A Appl. Sci. Manuf. 39, 1522–1529 (2008)CrossRefGoogle Scholar
  23. 23.
    ISO 11339 (2010): Adhesives—T-peel test for flexible-to-flexible bonded assembliesGoogle Scholar
  24. 24.
    DIN EN 1465 (2009): Adhesives—Determination of tensile lap-shear strength of bonded assembliesGoogle Scholar
  25. 25.
    Sacher, E.: Kinetics of epoxy cure: 3. The systems bisphenol-A epoxides/dicy. Polymer 14, 91–95 (1973)CrossRefGoogle Scholar
  26. 26.
    Mailhot, B., Morlat-Thérias, S., Ouahioune, M., Gardette, J.-L.: Study of the degradation of an epoxy/amine resin, 1. Macromol. Chem. Phys. 206, 575–584 (2005)CrossRefGoogle Scholar
  27. 27.
    Hong, S.G., Wu, C.S.: DSC and FTIR analysis of the curing behaviors of epoxy/DICY/solvent open systems. Thermochim. Acta 316, 167–175 (1998)CrossRefGoogle Scholar
  28. 28.
    Grassie, N., Guy, M., Tennent, N.: Degradation of epoxy polymers: Part 1—Products of thermal degradation of bisphenol-A diglycidyl ether. Polym. Degrad. Stab. 12, 65–91 (1985)CrossRefGoogle Scholar
  29. 29.
    Grassie, N., Guy, M., Tennent, N.: Degradation of epoxy polymers: 2—Mechanism of thermal degradation of bisphenol-A diglycidyl ether. Polym. Degrad. Stab. 13, 11–20 (1985)CrossRefGoogle Scholar
  30. 30.
    Zhang, G., Pitt, W.G., Goates, S.R., Owen, N.L.: Studies on oxidative photodegradation of epoxy resins by IR-ATR spectroscopy. J. Appl. Polym. Sci. 54, 419–427 (1994)CrossRefGoogle Scholar
  31. 31.
    Debus, J.: Raman studies on amorphous carbon layers—Raman-Untersuchungen von amorphen Kohlenstoffschichten. ArXiv e-prints (2012) 1203.0035Google Scholar
  32. 32.
    DIN EN 60216-1 (2014): Electrical insulating materials—Thermal endurance properties—Part 1: Ageing procedures and evaluation of test resultsGoogle Scholar
  33. 33.
    DIN EN 60216-3 (2007): Electrical insulating materials—Thermal endurance properties—Part 3: Instructions for calculating thermal endurance characteristicsGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. Tiefenthaller
    • 1
    • 2
  • R. Fluch
    • 2
  • B. Strauß
    • 2
  • S. Hild
    • 1
  1. 1.Institute of Polymer SciencesJohannes Kepler University LinzLinzAustria
  2. 2.voestalpine Stahl GmbHLinzAustria

Personalised recommendations