Fatigue Crack Growth Behaviour of Epoxy Nanocomposites—Influence of Particle Geometry

  • M. H. Kothmann
  • G. Bakis
  • R. Zeiler
  • M. Ziadeh
  • J. Breu
  • V. Altstädt
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


In this study, surface-modified spherical nano-silica and K-fluoro hectorites (O/K-hect), characterised by large lateral extensions and aspect ratios, were employed to analyse the effect of geometrical appearance on the fatigue crack growth (FCP) behaviour of an epoxy resin. The addition of nano-silica improved the FCP behaviour by nanoparticle debonding and subsequent plastic void growth. The number of particles contributing to toughening increases remarkably with rising stress intensity factor due to plastic zone enlargement. The improvement in crack propagation resistance by the use of the large O/K-hect, even at very low amounts (2.2 vol%) has to be highlighted. The main toughening mechanism is crack deflection due to the large lateral extension being in the range of the plastic zone size. Especially in the region of crack initiation and stable crack propagation, the clay tactoids reduce the propagation of the damage zone in front of the crack tip remarkably, resulting in a hugely enhanced crack resistance of the nanocomposites.



The authors highly acknowledge the financial support from the German Research Foundation in the frame of the Collaborative Research Center SFB 840: “From particulate nanosystems to mesotechnology”, and from the German Federal Ministry for Economic Affairs and Energy (FKZ 0327895E). The authors are grateful towards Mr. Brückner, Mrs. Lang, and Mrs. Förtsch, University of Bayreuth, for their support with the mechanical characterisation and microscopic investigations, respectively.


  1. 1.
    Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–533 (1963)CrossRefGoogle Scholar
  2. 2.
    Fischer, F., Beier, U., Wolff-Fabris, F., Altstädt, V.: Toughened high performance epoxy resin system for aerospace applications. Sci. Eng. Compos. Mater. 18, 209–215 (2011)CrossRefGoogle Scholar
  3. 3.
    Kinloch, A.J., Young, R.J. (eds.): Fracture Behaviour of Polymers. Applied Science Publishers, London (1983)Google Scholar
  4. 4.
    Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., Sprenger, S.: Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48, 530–541 (2007)CrossRefGoogle Scholar
  5. 5.
    Möller, M.W., Handge, U.A., Kunz, D.A., Lunkenbein, T., Altstädt, V., Breu, J.: Tailoring shear-stiff, mica-like nanoplatelets. ACS Nano 4, 717–724 (2010)CrossRefGoogle Scholar
  6. 6.
    Kothmann, M.H., Zeiler, R., Rios de Anda, A., Brückner, A., Altstädt, V.: Fatigue crack propagation behaviour of epoxy resins modified with silica-nanoparticles. Polymer 60, 157–163 (2015)CrossRefGoogle Scholar
  7. 7.
    Shi, H., Lan, T., Pinnavaia, T.J.: Interfacial effects on the reinforcement properties of polymer–organoclay nanocomposites. Chem. Mater. 8, 1584–1587 (1996)CrossRefGoogle Scholar
  8. 8.
    Kinloch, A.J., Taylor, A.C.: The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J. Mater. Sci. 41, 3271–3297 (2006)CrossRefGoogle Scholar
  9. 9.
    Kornmann, X., Thomann, R., Mülhaupt, R., Finter, J., Berglund, L.: Synthesis of amine-cured, epoxy-layered silicate nanocomposites: the influence of the silicate surface modification on the properties. J. Appl. Polym. Sci. 86, 2643–2652 (2002)CrossRefGoogle Scholar
  10. 10.
    Dittanet, P., Pearson, R.A.: Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53, 1890–1905 (2012)CrossRefGoogle Scholar
  11. 11.
    Zhang, H., Zhang, Z., Friedrich, K., Eger, C.: Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54, 1833–1842 (2006)CrossRefGoogle Scholar
  12. 12.
    Blackman, B.R.K., Kinloch, A.J., Lee, J.S., Taylor, A.C., Agarwal, R., Schueneman, G., Sprenger, S.: The fracture and fatigue behaviour of nano-modified epoxy polymers. J. Mater. Sci. 42, 7049–7051 (2007)CrossRefGoogle Scholar
  13. 13.
    Hedicke-Höchstötter, K., Demchuk, V., Langenfelder, D., Altstädt, V.: Fatigue crack propagation behaviour of polyamide-6 nanocomposites based on layered silicates. J. Plast. Technol. 3, 1–22 (2007)Google Scholar
  14. 14.
    Tang, L.-C., Zhang, H., Sprenger, S., Ye, L., Zhang, Z.: Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles. Compos. Sci. Technol. 72, 558–565 (2012)CrossRefGoogle Scholar
  15. 15.
    Kalo, H., Möller, M.W., Ziadeh, M., Dolejš, D., Breu, J.: Large scale melt synthesis in an open crucible of Na-fluorohectorite with superb charge homogeneity and particle size. Appl. Clay Sci. 48, 39–45 (2010)CrossRefGoogle Scholar
  16. 16.
    Ammann, L., Bergaya, F., Lagaly, G.: Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Miner. 40, 441–453 (2005)CrossRefGoogle Scholar
  17. 17.
    Carrado, K.A., Decarreau, A., Petit, S., Bergaya, F., Lagaly, G.: Synthetic clay minerals and purification of natural clay. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (eds.) Handbook of Clay Science, pp. 115–139. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  18. 18.
    ISO 15850 (2014): Plastics––Determination of tension-tension fatigue crack propagation––Linear elastic fracture mechanics (LEFM) approachGoogle Scholar
  19. 19.
    Stefanescu, E.A., Tan, X., Lin, Z., Bowler, N., Kessler, M.R.: Multifunctional PMMA–ceramic composites as structural dielectrics. Polymer 51, 5823–5832 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. H. Kothmann
    • 1
  • G. Bakis
    • 1
  • R. Zeiler
    • 1
  • M. Ziadeh
    • 2
  • J. Breu
    • 2
  • V. Altstädt
    • 1
  1. 1.Department of Polymer EngineeringUniversity of BayreuthBayreuthGermany
  2. 2.Department of Inorganic ChemistryUniversity of BayreuthBayreuthGermany

Personalised recommendations