Polypropylene for Pressure Pipes—From Polymer Design to Long-Term Performance

  • L. Boragno
  • H. Braun
  • A. M. Hartl
  • R. W. Lang
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


In order to create polypropylene materials that meet pipe applications requirements, good knowledge of the material’s structure–property relationships is necessary, as well as the right analytical tools to assess the final properties. The effect of crystallisation conditions, polymorphism and processing on the impact resistance of some nucleated pipe grades was studied. A dependency between polymorphism, process conditions and final pipe properties is reported. A short-term method for measuring the slow crack growth was successfully developed and applied, and a crack has been observed via microscopy. It was observed that a large plastic zone is formed in the specimen before the crack initiation and also ahead of the crack tip.


  1. 1.
    Gahleitner, M., Kock, C., Pachner, E., Pham, T., Stubenrauch, K., Tranninger, M., Popp, P.: Polypropylene. Kunststoffe Int. 101, 24–30 (2011)Google Scholar
  2. 2.
    Nestelberger, S., Herbst, H., Ek, C.-G.: Examining the long-term behaviour of deflected non-pressure plastic pipes. 3R Int. 46, 87–90 (2007)Google Scholar
  3. 3.
    Brückner, S., Meille, S.V., Petraccone, V., Pirozzi, B.: Polymorphism in isotactic polypropylene. Prog. Polym. Sci. 16, 361–404 (1991)CrossRefGoogle Scholar
  4. 4.
    De Rosa, C., Auriemma, F., Vollaro, P., Resconi, L., Guidotti, S., Camurati, I.: Crystallization behavior of propylene–butene copolymers: The trigonal form of isotactic polypropylene and form I of isotactic poly(1-butene). Macromolecules 44, 540–549 (2011)CrossRefGoogle Scholar
  5. 5.
    Lotz, B.: A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules 47, 7612–7624 (2014)CrossRefGoogle Scholar
  6. 6.
    Androsch, R., Di Lorenzo, M.L., Schick, C., Wunderlich, B.: Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51, 4639–4662 (2010)CrossRefGoogle Scholar
  7. 7.
    Grein, C.: Toughness of neat, rubber modified and filled β-nucleated polypropylene: From fundamentals to applications. Adv. Polym. Sci. 188, 43–104 (2005)CrossRefGoogle Scholar
  8. 8.
    Kathan, W.: Polypropylene, crystalline copolymers of propylene or compositions of polypropylene and other polyolefines having a high impact and stress crack resistance. European patent EP0177961 B1 (1988)Google Scholar
  9. 9.
    Norton, D.R., Keller, A.: The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 26, 704–716 (1985)CrossRefGoogle Scholar
  10. 10.
    Chen, H.B., Karger-Kocsis, J., Wu, J.S., Varga, J.: Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 43, 6505–6514 (2002)CrossRefGoogle Scholar
  11. 11.
    (a) Li, J.X., Cheung, W.L., Chan, C.M.: On the deformation mechanisms of β-poly-propylene: 1. Effect of necking on -phase PP crystals. Polymer 39, 6935–6940 (1998); (b) Li, J.X., Cheung, W.L.: On deformation mechanisms of β-polypropylene 2. Changes of lamellar structure caused by tensile load. Polymer 40, 2089–2102 (1999); (c) Li, J.X., Cheung, W.L.: On deformation mechanisms of β-polypropylene 3. Lamella structures after necking and cold drawing. Polymer 40, 3641–3656 (1999)Google Scholar
  12. 12.
    Rybnikar, F.: Transition of β to α phase in isotactic polypropylene. J. Macromol. Sci. Part B Phys. 30, 201–223 (1991)CrossRefGoogle Scholar
  13. 13.
    Guanyi, S., Feng, C., Guien, Z., Zhewen, H.: Plastic deformation and solid-phase transformation in β-phase polypropylene. Makromol. Chem. 190, 907–913 (1989)CrossRefGoogle Scholar
  14. 14.
    Krumova, M., Karger-Kocsis, J., Baltá Calleja, F.J., Fakirov, S.: Strain-induced β–α polymorphic transition in iPP as revealed by microhardness. J. Mat. Sci. 34, 2371–2375 (1999)Google Scholar
  15. 15.
    Raab, M., Kotek, J., Baldrian, J., Grellmann, W.: Toughness profile in injection-molded polypropylene: the effect of the β-modification. J. Appl. Polym. Sci. 69, 2255–2259 (1998)CrossRefGoogle Scholar
  16. 16.
    Huy, T.A., Adhikari, R., Lüpke, T., Henning, S., Michler, G.H.: Molecular deformation mechanisms of isotactic polypropylene in α and β-crystal forms by FTIR spectroscopy. J. Polym. Sci., Part B: Polym. Phys. 42, 4478–4488 (2004)CrossRefGoogle Scholar
  17. 17.
    La Carrubba, V., Piccarolo, S., Brucato, V.: Crystallization kinetics of iPP: influence of operating conditions and molecular parameters. J. Appl. Polym. Sci. 104, 1358–1367 (2007)CrossRefGoogle Scholar
  18. 18.
    Cavallo, D., Gardella, L., Alfonso, G.C., Mileva, D., Androsch, R.: Effect of comonomer partitioning on the kinetics of mesophase formation in random copolymers of propene and higher α-olefins. Polymer 53, 4429–4437 (2012)CrossRefGoogle Scholar
  19. 19.
    Piccarolo, S.: Borealis cooperation report. Universitá di Palermo DICPM (2007)Google Scholar
  20. 20.
    Mollova, A., Androsch, R., Mileva, D., Gahleitner, M., Funari, S.S.: Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur. Polymer J. 49, 1057–1065 (2013)CrossRefGoogle Scholar
  21. 21.
    Van der Meer, D.W., Varga, J., Vancso, G.J.: The influence of chain defects on the crystallisation behaviour of isotactic polypropylene. Express Polym. Lett. 9, 233–254 (2015)CrossRefGoogle Scholar
  22. 22.
    Nestelberger, S., Gahleitner, M., Piccarolo, S., Kiflie, Z., Liedauer, S., Koch, T.: Polymorphic crystallization of β-nucleated polypropylene in pipe extrusion—Comparison between simulation and experiment. In: Proceedings of the Polymer Processing Society 24th Annual Meeting (PPS-24; 15.–19.06.2008, Salerno). Salerno (2008)Google Scholar
  23. 23.
    Gedde, U.W., Viebke, J., Leijstrom, H., Ifwarson, M.: Long-term properties of hot-water polyolefin pipes—A review. Polym. Eng. Sci. 34, 1773–1787 (1994)CrossRefGoogle Scholar
  24. 24.
    ISO 18489 (2015): Polyethylene (PE) materials for piping systems—Determination of resistance to slow crack growth under cyclic loading—Cracked Round Bar test methodGoogle Scholar
  25. 25.
    Favier, V., Giroud, T., Strijko, E., Hiver, J.M., G’Sell, C., Hellinckx, S., Goldberg, A.: Slow crack propagation in polyethylene under fatigue at controlled stress intensity. Polymer 43, 1375–1382 (2002)Google Scholar
  26. 26.
    Lang, R.W., Pinter, G., Balika, W.: Konzept zur Nachweisführung für Nutzungsdauer und Sicherheit von PE-Druckrohren bei beliebiger Einbausituation. 3R Int. 44, 33–41 (2005)Google Scholar
  27. 27.
    Frank, A., Pinter, G., Kapur, M., Nezbedova, E.: Comparison of accelerated tests for PE grades lifetime assessment. In: Proceedings of Plastic Pipes XVI (24.–26.09.2012, Barcelona). Barcelona (2012)Google Scholar
  28. 28.
    Pinter, G., Haager, M., Balika, W., Lang, R.W.: Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades. Polym. Test. 26, 180–188 (2007)CrossRefGoogle Scholar
  29. 29.
    Redhead, A., Frank, A., Pinter, G.: Investigation of slow crack growth initiation in polyethylene pipe grades with accelerated cyclic tests. Eng. Fract. Mech. 101, 2–9 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • L. Boragno
    • 1
  • H. Braun
    • 1
  • A. M. Hartl
    • 2
  • R. W. Lang
    • 2
  1. 1.Borealis Polyolefine GmbHLinzAustria
  2. 2.Institute of Polymeric Materials and Testing, Johannes Kepler University LinzLinzAustria

Personalised recommendations