Advertisement

Slow Crack Growth of Polyethylene—Accelerated and Alternative Test Methods

  • B. Gerets
  • M. Wenzel
  • K. Engelsing
  • M. Bastian
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

Regarding lifetime of plastic products made of polyethylene (PE), resistance against slow crack growth failure is crucial. Therefore, in recent years material suppliers took a lot of effort into the improvement of PE materials leading to highly stress cracking resistant grades (e.g. PE 100-RC). This advantage in application unfortunately causes problems in material testing: As testing times become longer, highly resistant grades cannot be characterised quantitatively with standard test methods, like the Full-Notch Creep Test, anymore. Therefore, improved respectively new testing methods for the characterisation of slow crack growth resistance of PE have been developed. Results are presented and discussed for accelerated Full-Notch Creep Test (aFNCT), Strain Hardening Test (SHT) and Crack Round Bar (CRB) Test.

References

  1. 1.
    Plastics Europe: Plastics—The Facts 2014/2015: An analysis of European plastics production, demand and waste data. Information brochure, Brussels (2015)Google Scholar
  2. 2.
    Jansen, J.A.: Environmental stress cracking—The plastic killer. Adv. Mater. Process. issue June 50–53 (2004)Google Scholar
  3. 3.
    Wenzel, M., Gerets, B., Engelsing, K., Wüst, J., Heidemeyer, P., Bastian, M.: Neue Prüfmethoden zum langsamen Risswachstum von Polyethylen. 3R No. 09 (2013) 60–62Google Scholar
  4. 4.
    Michler, G.H., Baltá-Calleja, F.J.: Nano- and Micromechanics of Polymers. Carl Hanser, Munich (2012)CrossRefGoogle Scholar
  5. 5.
    ISO 16770 (2004): Plastics—Determination of environmental stress cracking (ESC) of polyethylene—Full notch creep test (FNCT)Google Scholar
  6. 6.
    McGoldrick, J., Bäckman, M., Haager, M., Hessel, J.: Prüfmethoden zur Bestimmung der Beständigkeit von Druckrohrmaterialien PE 100-RC gegen langsame Rissfortpflanzung—Auf den Sprödbruch kommt es an. 3R International 48, 2–5 (2009)Google Scholar
  7. 7.
    Menges, G., Haberstroh, E., Michaeli, W., Schmachtenberg, E.: Werkstoffkunde Kunststoffe, 5th edn. Carl Hanser, Munich Vienna (2005)Google Scholar
  8. 8.
    Kurelec, L., Teeuwen, M., Schoffeleers, H., Deblieck, R.: Strain hardening modulus as a measure of environmental stress crack resistance of high density polyethylene. Polymer 46, 6369–6379 (2005)CrossRefGoogle Scholar
  9. 9.
    ISO 18488 (2015): Polyethylene (PE) materials for piping systems—Determination of strain hardening modulus in relation to slow crack growth—Test methodGoogle Scholar
  10. 10.
    Nishimura, H., Narisawa, I.: Fatigue behavior of medium-density polyethylene pipes. Polym. Eng. Sci. 31, 399–403 (1991)CrossRefGoogle Scholar
  11. 11.
    ISO 18489 (2015): Polyethylene (PE) materials for piping systems—Determination of resistance to slow crack growth under cyclic loading—Cracked round Bar test methodGoogle Scholar
  12. 12.
    Van der Stok, E.J.W., Scholten, F.L.: Strain hardening tests on PE pipe materials. In: Proceedings of Plastic Pipes XVI (Barcelona, 24.–26.09.2012). Barcelona (2012)Google Scholar
  13. 13.
    Frank, A., Redhead, A., Kratochvilla, T., Dragaun, H., Pinter, G.: Accelerated material testing with cyclic CRB tests. In: Proceedings of Plastic Pipes XVI (Barcelona, 24.–26.09.2012). Barcelona (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • B. Gerets
    • 1
  • M. Wenzel
    • 1
  • K. Engelsing
    • 1
  • M. Bastian
    • 1
  1. 1.SKZ—German Plastics CenterWürzburgGermany

Personalised recommendations