Acoustic Emission Analysis for Assessment of Damage Kinetics of Short-Glass Fibre-Reinforced Thermoplastics—ESEM Investigations and Instrumented Charpy Impact Test

  • M. Schoßig
  • A. Zankel
  • C. Bierögel
  • P. Pölt
  • W. Grellmann
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


The acoustic emission (AE) analysis is a structure-sensitive test method of plastic diagnostics, which enables the characterisation of the damage kinetics as well as damage mechanisms under specific conditions. The AE analysis is linked to release of stored elastic energy, which propagates as spherical volume wave in the material. In this work, short-glass fibre-reinforced thermoplastic materials were examined in the quasi-static tensile test in the environmental scanning electron microscope (ESEM) with simultaneously recording of the AE as well as under impact-loading conditions in the instrumented Charpy impact test (ICIT). Therefore, it was possible to couple the mechanical, the acoustic and the micromechanical results to describe the damage kinetic as well as the damage mechanisms. In dependence on the bonding conditions of the glass fibre in the polymer matrix, different mechanisms of damage to be related to typical frequency ranges can be detected: (i) fibre fracture, (ii) matrix deformation with slipping of fibres in the delamination area and friction processes of the fibres in the matrix, (iii) debonding and pull-out with/without matrix yielding. The coupling of the AE analysis with the ICIT allows the assessment of the damage kinetic and therefore, the determination of the damage initiation under impact-loading conditions. However, in dependence on various bonding conditions, different results could be found. For good bonding conditions, the damage initiation takes placed before the material behaviour changes from elastic to elastic–plastic behaviour. This could be found for the short-glass fibre-reinforced high-density polyethylene materials. For the fibre-reinforced polybutene materials, the first AE takes place at the point of elastic–plastic material behaviour. An energetic approach of the damage initiation by the parameter J Si shows an independent behaviour from the polymer matrix as well as from the glass fibre content. For all investigated thermoplastics, a J Si-value of 0.8 N/mm as resistance against stable crack propagation could be determined.



The authors would like to thank LyondellBasell Industries, Frankfurt, Germany for providing the short-glass fibre-reinforced materials used in this study. Dr. T. Mecklenburg is acknowledged for his help and many fruitful discussions.


  1. 1.
    Grellmann, W., Seidler, S. (eds.): Polymer Testing, 2nd edn. Carl Hanser, Munich (2013)Google Scholar
  2. 2.
    Zankel, A., Pölt, P., Ingolic, E., Gahleitner, M., Grein, C.: The fracture behaviour of polymers—In situ investigations in the ESEM. Imaging Microsc. 7, 16–18 (2005)Google Scholar
  3. 3.
    Zankel, A., Pölt, P., Gahleitner, M., Ingolic, E., Grein, C.: Tensile tests of polymers at low temperatures in the environmental scanning electron microscope: an improved cooling platform. Scanning 29, 261–269 (2007)CrossRefGoogle Scholar
  4. 4.
    Nase, M., Zankel, A., Langer, B., Baumann, H.J., Grellmann, W., Poelt, P.: Investigation of the peel behavior of polyethylene/polybutene-1 peel films using in situ peel tests with environmental scanning electron microscopy. Polymer 49, 5458–5466 (2008)CrossRefGoogle Scholar
  5. 5.
    Bardenheier, R.: Schallemissionsuntersuchungen an polymeren Verbundwerkstoffen – Teil I: Das Schallemissionsmeßverfahren als quasi-zerstörungsfreie Werkstoffprüfung. Zeitschrift für Werkstofftechnik 11, 41–46 (1980)CrossRefGoogle Scholar
  6. 6.
    Grosse, C.U., Ohtsu, M. (eds.): Acoustic Emission Testing—Basics for Research—Applications in Civil Engineering. Springer, Berlin (2008)Google Scholar
  7. 7.
    Bierögel, C.: Hybrid methods of polymer diagnostics. In: Grellmann, W., Seidler, S. (eds.) Polymer Testing, 2nd edn. Carl Hanser, Munich (2013), pp. 497–511Google Scholar
  8. 8.
    Bohse, J.: Acoustic emission characteristics of micro-failure processes in polymer blends and composites. Compos. Sci. Technol. 60, 1213–1226 (2000)CrossRefGoogle Scholar
  9. 9.
    Ramirez-Jimenez, C.R., Papadakis, N., Reynolds, N., Gan, T.H., Purnell, P., Pharaoh, M.: Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Composi. Sci. Technol. 64, 1819–1827 (2004)CrossRefGoogle Scholar
  10. 10.
    Barré, S., Benzeggagh, M.L.: On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene. Compos. Sci. Technol. 52, 369–376 (1994)CrossRefGoogle Scholar
  11. 11.
    Ségard, E., Benmedakhene, S., Laksimi, A., Laï, D.: Damage analysis and the fibre–matrix effect in polypropylene reinforced by short glass fibres above glass transition temperature. Compos. Struct. 60, 67–72 (2003)CrossRefGoogle Scholar
  12. 12.
    Kocsis, Z., Czigány, T.: Investigation of the debonding process in wood fiber reinforced polymer composites by acoustic emission. Mater. Sci. Forum 537–538, 199–206 (2007)CrossRefGoogle Scholar
  13. 13.
    Yu, Y.-H., Choi, J.-H., Kweon, J.-H., Kim, D.-H.: A study on the failure detection of composite materials using an acoustic emission. Compos. Struct. 75, 163–169 (2006)CrossRefGoogle Scholar
  14. 14.
    Giordano, M., Calabrò, A., Esposito, C., Salucci, C., Nicolais, L.: Analysis of acoustic emission signals resulting from fiber breakage in single fiber composites. Polym. Compos. 20, 758–770 (1999)CrossRefGoogle Scholar
  15. 15.
    de Groot, P.J., Wijnen, P.A.M., Janssen, R.B.F.: Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites. Compos. Sci. Technol. 55, 405–412 (1995)CrossRefGoogle Scholar
  16. 16.
    Ni, Q.-Q., Iwamoto, M.: Wavelet transform of acoustic emission signals in failure of model composites. Eng. Fract. Mech. 69, 717–728 (2002)CrossRefGoogle Scholar
  17. 17.
    Gutkin, R., Green, C.J., Vangrattanachai, S., Pinho, S.T., Robinson, P., Curtis, P.T.: On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses. Mech. Syst. Signal Process. 25, 1393–1407 (2011)CrossRefGoogle Scholar
  18. 18.
    Haselbach, W., Lauke, B.: Acoustic emission of debonding between fibre and matrix to evaluate local adhesion. Compos. Sci. Technol. 63, 2155–2162 (2003)CrossRefGoogle Scholar
  19. 19.
    Schoßig, M.: Schädigungsmechanismen in faserverstärkten Kunststoffen – Quasistatische und dynamische Untersuchungen. Vieweg+Teubner/Springer, Wiesbaden (2011)CrossRefGoogle Scholar
  20. 20.
    Suzuki, H., Kinjo, T., Hayashi, Y., Takemoto, M., Ono, K.: Wavelet transform of acoustic emission signals. J. Acoust. Emission 14, 69–84 (1996)Google Scholar
  21. 21.
    Blatter, C.: Wavelets—Eine Einführung. Advanced Lectures in Mathematics Series, 2nd edn. Friedrich Vieweg & Sohn, Braunschweig (2003)Google Scholar
  22. 22.
    Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave and related transforms in seismic analysis. Geoexploration 23, 85–102 (1984)CrossRefGoogle Scholar
  23. 23.
    Stokes, D.J.: Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM). John Wiley & Sons, Chichester (2008)CrossRefGoogle Scholar
  24. 24.
    Dragnevski, K.I.: A brief overview of in-situ mechanical testing in the environmental scanning electron microscope. Micro Nanosyst. 4, 92–96 (2012)CrossRefGoogle Scholar
  25. 25.
    Schoßig, M., Zankel, A., Bierögel, C., Pölt, P., Grellmann, W.: ESEM investigations for assessment of damage kinetics of short glass fibre reinforced thermoplastics—Results of in situ tensile tests coupled with acoustic emission analysis. Compos. Sci. Technol. 71, 257–265 (2011)CrossRefGoogle Scholar
  26. 26.
    Michler, G.H., Lebek, W.: Ultramikrotomie in der Materialforschung. Carl Hanser, Munich (2004)Google Scholar
  27. 27.
    Zankel, A., Chernev, B., Brandl, C., Poelt, P., Wilhelm, P., Nase, M., Langer, B., Grellmann, W., Baumann, H.J.: Assessment of beam damage in polymers caused by in situ ESEM analysis using IR spectroscopy. Macromol. Symp. 265, 156–165 (2008)CrossRefGoogle Scholar
  28. 28.
    Jungbluth, M.: Untersuchungen zum Einfluß der Prüfkörperdicke und der Temperatur auf die Zähigkeitseigenschaften von PVCC und PVC bei stoßartiger Beanspruchung. Diploma thesis, Technische Hochschule Carl Schorlemmer Leuna-Merseburg, Merseburg (1982)Google Scholar
  29. 29.
    Grellmann, W.: Beurteilung der Zähigkeitseigenschaften von Polymerwerkstoffen durch bruchmechanische Kennwerte. Habilitation thesis, Technische Hochschule Carl Schorlemmer Leuna-Merseburg, Merseburg (1985)Google Scholar
  30. 30.
    Grellmann, W., Sommer, J.-P.: Beschreibung der Zähigkeitseigenschaften von Polymerwerkstoffen mit dem J-Integralkonzept. Fracture Mechanics, Micromechanics and Coupled Fields (FMC) Series 17, pp. 48–72 (1985)Google Scholar
  31. 31.
    Grellmann, W., Sommer, J.-P., Hoffmann, H., Michel, B.: Application of different J-integral evaluation methods for the description of toughness properties of polymers. In: Proceedings of the 1st Conference on Mechanics (29.06.–03.07.1987, Prague). Prague (1987), vol. 5, pp. 129–133Google Scholar
  32. 32.
    Grellmann, W., Seidler, S., Lauke, B.: Application of the J-integral concept for the description of toughness properties of fiber reinforced polyethylene composites. Polym. Compos. 12, 320–326 (1991)CrossRefGoogle Scholar
  33. 33.
    Grellmann, W., Seidler, S.: J-integral analysis of fibre-reinforced injection-moulded thermoplastics. J. Polym. Eng. 11, 71–101 (1992)CrossRefGoogle Scholar
  34. 34.
    Blumenauer, H.: 100 Jahre Kerbschlagbiegeversuch nach Charpy. Materialwiss. Werkstofftech. 32, 506–513 (2001)CrossRefGoogle Scholar
  35. 35.
    Grellmann, W.: Fracture toughness measurements in engineering plastics. In: Grellmann, W., Seidler, S. (eds.) Polymer Testing, 2nd edn. Carl Hanser, Munich (2013), pp. 233–286CrossRefGoogle Scholar
  36. 36.
    Schoßig, M., Grellmann, W., Mecklenburg, T.: Characterization of the fracture behavior of glass-fiber reinforced thermoplastics based on PP, PE-HD and PB-1. J. Appl. Polym. Sci. 115, 2093–2102 (2010)CrossRefGoogle Scholar
  37. 37.
    Grellmann, W., Seidler, S., Hesse, W.: Testing of plastics—Instrumented Charpy impact test (ICIT)—procedure for determining the crack resistance behaviour using the instrumented impact test (MPK-ICIT): Part I: Determination of characteristic fracture mechanics parameters for resistance against unstable crack propagation; Part II: Determination of characteristic fracture mechanics parameters for resistance against stable crack propagation. Merseburg (2016).
  38. 38.
    Anderson, T.L.: Fracture Mechanics—Fundamentals and Applications. Taylor & Francis, Boca Raton (2005)Google Scholar
  39. 39.
    Grellmann, W., Lach, R., Seidler, S.: Determination of geometry-independent fracture mechanics values of polymers. In: Francois, D., Pineau, A. (eds.) From Charpy to Present Impact Testing. Publication 30, Elsevier Science: Oxford (2002), pp. 145–154CrossRefGoogle Scholar
  40. 40.
    Schoßig, M., Bierögel, C., Grellmann, W.: Prüfung von Kunststoffen—Schallemissions-analyse—Prozedur zur Validierung von AE-Sensoren (PSM-AE). Merseburg (2010)Google Scholar
  41. 41.
    Michler, G.H.: Kunststoff-Mikromechanik: Morphologie, Deformations- und Bruch-mechanismen. Carl Hanser, Munich Vienna (1992)Google Scholar
  42. 42.
    Cantwell, W.J., Roulin-Moloney, A.C.: Fractography and failure mechanisms of unfilled and particulate filled epoxy resins. In: Roulin-Moloney, A.C. (ed.) Fractography and Failure Mechanisms of Polymers and Composites, pp. 233–290. Elsevier Applied Science, London (1989)Google Scholar
  43. 43.
    Grellmann, W., Seidler, S. (eds.): Deformation and Fracture Behaviour of Polymers. Springer, Berlin (2001)Google Scholar
  44. 44.
    Michler, G.H.: Electron Microscopy of Polymers. Springer, Berlin (2008)Google Scholar
  45. 45.
    Michler, G.H., Baltá-Calleja, F.J.: Nano- and Micromechanics of Polymers—Structure Modification and Improvement of Properties. Carl Hanser, Munich (2012)CrossRefGoogle Scholar
  46. 46.
    Friedrich, K.: Fractographic analysis of polymer composites. In: Friedrich, K. (ed.) Application of Fracture Mechanics to Composite Materials, pp. 425–487. Elsevier Science, Amsterdam (1989)CrossRefGoogle Scholar
  47. 47.
    Schoßig, M., Bierögel, C., Grellmann, W.: Assessment of fracture behavior under impact loading with simultaneous recording of acoustic emission. Mater. Test. 84–91 (2013)Google Scholar
  48. 48.
    Seidler, S.: Anwendung des Rißwiderstandskonzeptes zur Ermittlung strukturbezogener bruchmechanischer Werkstoffkenngrößen bei dynamischer Beanspruchung. Fortschritts-Berichte VDI-Reihe 18: Mechanik/Bruchmechanik Nr. 231, VDI-Verlag, Düsseldorf (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Schoßig
    • 1
  • A. Zankel
    • 3
  • C. Bierögel
    • 1
    • 2
  • P. Pölt
    • 3
  • W. Grellmann
    • 1
    • 2
  1. 1.Polymer Service GmbH MerseburgMerseburgGermany
  2. 2.Centre of EngineeringMartin Luther University Halle-WittenbergHalle/SaaleGermany
  3. 3.Institute for Electron Microscopy and NanoanalysisGraz University of TechnologyGrazAustria

Personalised recommendations