Time-Dependent Fracture Behaviour of Polymers at Impact and Quasi-Static Loading Conditions

  • R. Lach
  • W. Grellmann
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


Based on the crack resistance (R) concept of elastic fracture mechanics the crack propagation kinetics at impact and quasi-static loading conditions was analysed both from the experimental and analytical point of view. For blends composed of polyurethane (TPU) and an acrylonitrile–butadiene–styrene copolymer (ABS), it has been shown that the stop block method in multiple-specimens technique is the most suitable method for determining R-curves at impact loading conditions. As shown for a couple of thermoplastic materials such as polypropylene(PP)/ethylene–propylene rubber (EPR)/polyethylene(PE) copolymers, short-glass fibre-reinforced PP, binary blends of polystyrene(PS)–polybutadiene(PB) block copolymers and PP/EPR blends, the crack-tip-opening displacement (CTOD) rate (limit value) relates exclusively to the deformations that occur in the matrix or the major phase, not, however, to those that occur inside the particles or the minor phase, or near interfaces. That means that the CTOD rate is not affected by the glass fibre fraction or the particle distance. Furthermore the CTOD rate is not influenced by the temperature (polycarbonate) and proportional to the loading speed (PP materials). For most of the polymers investigated, such as PC (> 40 °C), PP/EPR/PE, PP, PP/glass fibre composites, PE, ABS, TPU/ABS blends and SB block copolymer blends, a 3-phase process the crack propagation kinetics could be found, with the CTOD rate as a function of the stable crack growth (or of time) quickly converging against a limit value. Here, this stationary crack propagation (Phase III) is preceded by crack-tip blunting/crack initiation (Phase I) and non-stationary stable crack growth (Phase II).


  1. 1.
    Horst, T., Heinrich, G.: Modellierung der Rissausbreitung in verstärkten polymeren Werkstoffen. In: Proceedings Polymerwerkstoffe 2004 (Halle, 29.09.–01.10.2004). Halle (2004), PII-45Google Scholar
  2. 2.
    Lach, R., Seidler, S., Grellmann, W.: Resistance against the intrinsic rate of fracture mechanics parameters for polymeric materials under moderate impact loading. Mech. Time-Depend. Mater. 9, 103–119 (2005)CrossRefGoogle Scholar
  3. 3.
    Grellmann, W., Seidler, S. (eds.): Deformation and Fracture Behaviour of Polymers. Springer, Berlin (2001)Google Scholar
  4. 4.
    Lach, R., Adhikari, R., Weidisch, R., Huy, T.A., Michler, G.H., Grellmann, W., Knoll, K.: Fracture toughness behavior of binary styrene–butadiene block copolymer blends. J. Mater. Sci. 39, 1283–1295 (2004)CrossRefGoogle Scholar
  5. 5.
    Kotter, I.: Morphologie-Zähigkeits-Korrelationen von EPR-modifizierten Polypropylen-werk stoffen. Mensch & Buch Verlag, Berlin (2003)Google Scholar
  6. 6.
    Zhurkov, S.N.: Kinetic concept of the strength of solids. Int. J. Fract. Mech. 1, 311–323 (1965)Google Scholar
  7. 7.
    Hertling, J.: Ausbreitungsgeschwindigkeit von instabilen Rissen in Polymeren bei tiefen Temperaturen. Wissenschaftliche Berichte des Forschungszentrums Karlsruhe (Technik und Umwelt) FZKA 6326 (Ph.D. Thesis, Universität TH Karlsruhe), Forschungszentrum Karlsruhe GmbH, Karlsruhe (1999)Google Scholar
  8. 8.
    Döll, W., Seidelmann, U., Könczöl, L.: On the validity of the Dugdale model for craze zones at crack tips in PMMA. J. Mater. Sci. 15, 2389–2394 (1980). Marshall, G.P., Culver, L.E., Williams, J.G.: Crack and craze propagation in polymers: a fracture mechanics approach. I. Crack growth in polymethyl methacrylate in air. Plast. Polym. 37, 75–80 (1969)Google Scholar
  9. 9.
    Kerkhof, F.: Wave fractography. In: Sik, G.C., Wie, R.P., Erdogan, F. (eds.) Linear Fracture Mechanics. Euro Publisher Company Inc. (1976), pp. 303–321Google Scholar
  10. 10.
    Dear, J.P.: Comparison of fast fracture properties of thermoplastics. Polym. Eng. Sci. 36, 1210–1216 (1996)CrossRefGoogle Scholar
  11. 11.
    Anderson, T.L.: Fracture Mechanics. Fundamentals and Applications. 2nd ed., CRC Press, Boca Raton (1995)Google Scholar
  12. 12.
    Rice, J.R., Drugan, W.J., Sham, T.-L.: Elastic-plastic analysis of growing cracks. In: Proceedings of the 12th National Symposium on Fracture Mechanics (St. Louis, 21.–23.05.1979), pp. 189–221, ASTM Special Technical Publications 700 (1980)Google Scholar
  13. 13.
    Rice, J.R., Sorensen, E.P.: Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J. Mech. Phys. Solids 26, 163–186 (1978)CrossRefGoogle Scholar
  14. 14.
    Sumpter, J.D.G.: The energy dissipation rate approach to tearing instability. Eng. Fract. Mech. 71, 17–37 (2004)CrossRefGoogle Scholar
  15. 15.
    Newman Jr., J.C., James, M.A., Zerbst, U.: A review of the CTOA/CTOD fracture criterion. Eng. Fract. Mech. 70, 371–385 (2003)CrossRefGoogle Scholar
  16. 16.
    Grellmann, W., Seidler, S., Jung, K., Che, M., Kotter, I.: Influence of specimen geometry and loading conditions on the crack resistance behaviour of poly(vinyl chloride) and polypropylene. In: Grellmann, W., Seidler, S. (eds.) Deformation and Fracture Behaviour of Polymers. Springer, Berlin (2001), pp. 51–70CrossRefGoogle Scholar
  17. 17.
    Gomoll, A., Wanich, T., Bellare, A.: J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE. J. Orthop. Res. 20, 1152–1156 (2002)CrossRefGoogle Scholar
  18. 18.
    Lach, R., Grellmann, W.: Time-and temperature-dependent fracture mechanics of polymers: general aspects at monotonic quasi-static and impact loading conditions. Macromol. Mater. Eng. 273, 555–567 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. Lach
    • 1
  • W. Grellmann
    • 1
    • 2
  1. 1.Polymer Service GmbH Merseburg, Associated An-Institute of University of Applied Sciences MerseburgMerseburgGermany
  2. 2.Centre of EngineeringMartin Luther University Halle-WittenbergHalle/SaaleGermany

Personalised recommendations