Skip to main content

High Resolution Photovoltaic Subretinal Prosthesis for Restoration of Sight

  • Chapter
  • First Online:
Book cover Artificial Vision

Abstract

In photovoltaic subretinal prostheses, each pixel converts light into electric current to stimulate the nearby inner retinal neurons. Visual information is projected onto the implant by video goggles using pulsed near-infrared (~880 nm) light. This design avoids the use of bulky electronics and trans-scleral wiring, thereby greatly reducing the surgical complexity. Optical activation of the photovoltaic pixels allows scaling the implants to thousands of electrodes, and multiple modules can be tiled under the retina to expand the visual field.

Similarly to normal vision, retinal response to prosthetic stimulation exhibits flicker fusion at high frequencies (>20 Hz), adaptation to static images, and non-linear summation of subunits in the receptive fields. Photovoltaic arrays with 70 μm pixels restored visual acuity up to a pixel pitch in rats blinded by retinal degeneration, which is only twice lower than natural acuity in these animals. If these results translate to human retina, such implants could restore visual acuity up to 20/250. With eye scanning and perceptual learning, human patients might even cross the 20/200 threshold of legal blindness. Ease of implantation and tiling of these wireless modules to cover a large visual field, combined with high resolution opens the door to highly functional restoration of sight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behrend MR, Ahuja AK, Humayun MS, Chow RH, Weiland JD. Resolution of the epiretinal prosthesis is not limited by electrode size. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):436–42.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boinagrov D, Pangratz-Fuehrer S, Goetz G, Palanker D. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes. J Neural Eng. 2014;11(2):026008.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chow AY, Bittner AK, Pardue MT. The artificial silicon retina in retinitis pigmentosa patients (an American Ophtalmological Association thesis). Trans Am Ophthalmol Soc. 2010;108:120–54.

    PubMed  PubMed Central  Google Scholar 

  4. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol. 2004;122:460–9.

    Article  PubMed  Google Scholar 

  5. Chow AY, Pardue MT, Chow VY, Peyman GA, Liang CLC, Perlman JI, Peachey NS. Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng. 2001;9(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  6. Djilas M, Olès C, Lorach H, Bendali A, Dégardin J, Dubus E, Lissorgues-Bazin G, Rousseau L, Benosman R, Ieng S-H, Joucla S, Yvert B, Bergonzo P, Sahel J, Picaud S. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J Neural Eng. 2011;8(4):046020.

    Article  CAS  PubMed  Google Scholar 

  7. Dobelle WH, Quest DO, Antunes JL, Roberts TS, Girvin JP. Artificial vision for the blind by electrical stimulation of the visual cortex. Neurosurgery. 1979;5(4):521–7.

    Article  CAS  PubMed  Google Scholar 

  8. Heine WF, Passaglia CL. Spatial receptive field properties of rat retinal ganglion cells. Vis Neurosci. 2011;28(05):403–17.

    Article  PubMed  Google Scholar 

  9. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga P, Cideciyan AV, Duncan JL, Eliott D, Filley E, Ho AC, Santos A, Safran AB, Arditi A, Del Priore LV, Greenberg RJ, A. I. S. Group. Interim results from the international trial of Second Sight's visual prosthesis. Ophthalmology. 2012;119(4):779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Humayun MS, Prince M, de Juan E, Barron Y, Moskowitz M, Klock IB, Milam AH. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1999;40(1):143–8.

    CAS  PubMed  Google Scholar 

  11. Jensen RJ, Rizzo 3rd JF. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res. 2006;83(2):367–73.

    Article  CAS  PubMed  Google Scholar 

  12. Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res. 2005;81(2):123–37.

    Article  CAS  PubMed  Google Scholar 

  13. Joucla S, Yvert B. Improved focalization of electrical microstimulation using microelectrode arrays: a modeling study. PLoS One. 2009;4(3):e4828.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee DY, Lorach H, Huie P, Palanker D. Implantation of modular photovoltaic subretinal prosthesis. Ophthalmic Surg Lasers Imaging Retina. 2016;47(2):171–4.

    Article  PubMed  Google Scholar 

  15. Lei, X, Kane, S, Cogan, S, Lorach, H, Galambos, L, Huie, P, Mathieson, K, Kamins, T, Harris, J & Palanker, D. ‘SiC protective coating for photovoltaic retinal prosthesis’. Journal of Neural Engineering. 2016;13(4) DOI 10.1088/1741-2560/13/4/046016

  16. Lorach H, Goetz G, Mandel Y, Lei X, Kamins TI, Mathieson K, Huie P, Dalal R, Harris JS, Palanker D. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration. Vision Res. 2015;111(Pt B):142–8.

    Article  PubMed  Google Scholar 

  17. Lorach H, Goetz G, Smith R, Lei X, Mandel Y, Kamins T, Mathieson K, Huie P, Harris J, Sher A, Palanker D. Photovoltaic restoration of sight with high visual acuity. Nat Med. 2015;21:476–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lorach H, Kung J, Beier C, Mandel Y, Dalal R, Huie P, Wang J, Lee S, Sher A, Jones BW, Palanker D. Development of animal models of local retinal degeneration. Invest Ophthalmol Vis Sci. 2015;56(8):4644–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lorach H, Lei X, Galambos L, Kamins T, Mathieson K, Dalal R, Huie P, Harris J, Palanker D. Interactions of prosthetic and natural vision in animals with local retinal degeneration. Invest Ophthalmol Vis Sci. 2015;56(12):7444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lorach H, Wang J, Lee DY, Dalal R, Huie P, Palanker D. Retinal safety of near infrared radiation in photovoltaic restoration of sight. Biomed Opt Express. 2016;7(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  21. Mandel Y, Goetz G, Lavinsky D, Huie P, Mathieson K, Wang L, Kamins T, Galambos L, Manivanh R, Harris J, Palanker D. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat Commun. 2013;4:1980.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res. 2003;22(5):607–55.

    Article  PubMed  Google Scholar 

  23. Martinez-Conde S, Macknik SL, Hubel DH. The role of fixational eye movements in visual perception. Nat Rev Neurosci. 2004;5(3):229–40.

    Article  CAS  PubMed  Google Scholar 

  24. Nanduri D, Fine I, Horsager A, Boynton GM, Humayun MS, Greenberg RJ, Weiland JD. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Invest Ophthalmol Vis Sci. 2012;53(1):205–14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sabbah N, Authie CN, Sanda N, Mohand-Said S, Sahel JA, Safran AB. Importance of eye position on spatial localization in blind subjects wearing an Argus II retinal prosthesis. Invest Ophthalmol Vis Sci. 2014;55(12):8259–66.

    Article  PubMed  Google Scholar 

  26. Santos A, Humayun M, de Juan E, Greenberg RJ, Marsh MJ, Klock IB, Milam AH. Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch Ophthalmol. 1997;115(4):511–5.

    Article  CAS  PubMed  Google Scholar 

  27. Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottrial C, Gekeler F, Groppe M, Jackson TL, MacLaren RE, Koitschev A, Kusnyerik A, Neffendorf J, Nemeth J, Naeem MA, Peters T, Sachs H, Simpson A, Singh MS, Wilhelm B, Wong D, Zrenner E. Subretinal visual Implant Alpha IMS – clinical trial interim report. Vision Res. 2015;111(Pt B):149–60.

    Article  PubMed  Google Scholar 

  28. Stingl K, Bartz-Schmidt K-U, Gekeler F, Kusnyerik A, Sachs H, Zrenner E. Functional outcome in subretinal electronic implants depends on foveal eccentricity. Invest Ophthalmol Vis Sci. 2013;54(12):7658–65.

    Article  PubMed  Google Scholar 

  29. Wang L, Mathieson K, Kamins TI, Loudin JD, Galambos L, Goetz G, Sher A, Mandel Y, Huie P, Lavinsky D, Harris JS, Palanker DV. Photovoltaic retinal prosthesis: implant fabrication and performance. J Neural Eng. 2012;9(4):046014.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zrenner E. Fighting blindness with microelectronics. Sci Transl Med. 2013;5:210–6.

    Article  Google Scholar 

  31. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel V-P, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc B: Biol Sci. 2011;278(1711):1489–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Lorach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lorach, H., Palanker, D. (2017). High Resolution Photovoltaic Subretinal Prosthesis for Restoration of Sight. In: Gabel, V. (eds) Artificial Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-41876-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41876-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41874-2

  • Online ISBN: 978-3-319-41876-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics