Skip to main content

The Boston Retinal Implant

  • Chapter
  • First Online:
Artificial Vision

Abstract

The Boston Retinal Implant Project has developed a subretinal, hermetically-enclosed, chronically-implantable vision prosthesis to restore some useful vision to people with degenerative retinal diseases, especially retinitis pigmentosa and age-related macular degeneration. Our implant attaches to the outside of the eye, with only the electrode array entering the eye, carrying over 256 independently-configurable retinal stimulation channels. Our device receives wireless power and data from an inductive link, and inbound data includes image information in the form of stimulation commands containing current amplitudes and pulse widths. Outbound data includes status information on the implant and measurements of electrode voltages. A custom-designed integrated circuit chip is packaged in an 11 mm-diameter titanium case with a ceramic feedthrough, attached to the side of the eye. The chip decodes the stimulation data, creates biphasic, charged-balanced current pulses, and monitors the resulting voltages on the stimulating electrodes. The electrode array is a thin, flexible, microfabricated film carrying hundreds of wires to exposed electrodes in the eye. The electrodes are coated with sputtered iridium oxide film to allow much greater charge transfer per unit area by means of reversible faradaic reactions. The Boston Retinal Implant is being manufactured and tested in pre-clinical trials for safety, with plans to begin clinical trials soon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rizzo JF, Wyatt JL, Humayun M, deJuan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G. Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology. 2001;108(1):13–4.

    Article  PubMed  Google Scholar 

  2. Humayun M, Propst R, de Juan E, McCormick K, Hickingbotham D. Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol. 1994;112:110–6.

    Article  CAS  PubMed  Google Scholar 

  3. Rizzo JF, Wyatt JL, Loewenstein J, Kelly SK, Shire DB. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci. 2003;44(12):5355–61.

    Article  PubMed  Google Scholar 

  4. Rizzo JF, Wyatt JL, Loewenstein J, Kelly SK, Shire DB. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci. 2003;44(12):5362–9.

    Article  PubMed  Google Scholar 

  5. Shire DB, Kelly SK, Chen J, Doyle P, Gingerich MD, Cogan SF, Drohan WA, Mendoza O, Theogarajan L, Wyatt JL, Rizzo JF. Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng. 2009;56(10):2502–11.

    Article  PubMed  Google Scholar 

  6. Kelly SK, Shire DB, Chen J, Doyle P, Gingerich MD, Cogan SF, Drohan WA, Behan S, Theogarajan L, Wyatt JL, Rizzo JF. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng. 2011;58(11):3197–205.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shire DB, Ellersick W, Kelly SK, Doyle P, Priplata A, Drohan W, Mendoza O, Gingerich M, McKee B, Wyatt JL, Rizzo JF. ASIC design and data communications for the Boston retinal prosthesis. Transactions of the IEEE Engineering in Medicine and Biology Conference. 2012. p. 292–5.

    Google Scholar 

  8. Kelly SK, Shire DB, Chen J, Gingerich MD, Cogan SF, Drohan WA, Ellersick W, Krishnan A, Behan S, Wyatt JL, Rizzo JF. Developments on the Boston 256-channel retinal implant. Proceedings of the International Conference on Multimedia and Expo. 2013. p. 6.

    Google Scholar 

  9. Merrill DR, Bikson M, Jeffreys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141(2):171–98.

    Article  PubMed  Google Scholar 

  10. Cogan SF. Neural stimulating and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.

    Article  CAS  PubMed  Google Scholar 

  11. Kelly SK, Ellersick W, Krishnan A, Doyle P, Shire DB, Wyatt JL, Rizzo JF. Redundant safety features in a high-channel-count retinal neurostimulator. Transactions of IEEE Biomedical Circuits and Systems Conference. 2014. p. 216–9.

    Google Scholar 

  12. Klein JD, Clauson SL, Cogan SF. Reactive IrO2 sputtering in reducing/oxidizing atmospheres. J Mat Res. 1995;10:328–33.

    Article  CAS  Google Scholar 

  13. Cogan SF, Ehrlich J, Plante TD, Smirnov A, Shire DB, Gingerich MD, Rizzo JF. Sputtered iridium oxide films (SIROFs) for neural stimulation electrodes. J Biomed Mat Res B Appl Biomat. 2009;89(2):353–61.

    Article  Google Scholar 

  14. Mokwa W, Wessling B, Schnakenberg U. Sputtered Ir films evaluated for electrochemical perormance I. Experimental results. J Electrochem Soc. 2008;155:F61–5.

    Article  Google Scholar 

  15. Jiang G, Zhou D. Technology advances and challenges in hermetic packaging for implantable medical devices. In: Implantable neural prostheses 2: techniques and engineering approaches. New York: Springer; 2010.

    Google Scholar 

  16. Shire DB, Salzer T, Jones W, Karbasi A, Behan S, Drohan WA, Mendoza O, Chen J, Wyatt JL, Rizzo JF. Hermetic sealing and packaging technology for the Boston retinal prosthesis. Invest Ophthalmol Vis Sci. 2012;53:5523.

    Google Scholar 

  17. Kelly SK, Wyatt JL. Power-efficient neural tissue stimulator with energy recovery. IEEE Trans Biomed Cir Sys. 2011;5(1):20–9.

    Article  CAS  Google Scholar 

  18. Krishnan, Kelly SK. On the cause and control of residual voltage generated by electrical stimulation of neural tissue. Proceedings of the IEEE Engineering in Medicine and Biology Conference. 2012. p. 3899–902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kelly, S.K., Rizzo, J. (2017). The Boston Retinal Implant. In: Gabel, V. (eds) Artificial Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-41876-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41876-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41874-2

  • Online ISBN: 978-3-319-41876-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics