Skip to main content

Argus® II Retinal Prosthesis System

  • Chapter
  • First Online:
Artificial Vision

Abstract

The Argus® II epiretinal prosthesis was the first retinal implant to receive commercial approval in Europe and in the United States. To date, it is the most widely used prosthesis worldwide with over 100 implanted patients in several countries, including the United States, United Kingdom, France, Germany, Switzerland, Mexico and Saudi Arabia. The device is used as a treatment for patients with profound vision loss due to end-stage photoreceptor degenerative diseases.

Argus II works by electrical stimulation of the inner retina, retinal ganglion cells and/or bipolar cells that remain partially functional in these patients. The system is an epiretinal prosthesis, meaning that the microelectrode array is surgically implanted on the retinal surface nearest to the nerve fiber layer. Video signals are acquired by a glasses-mounted video camera and transformed into electrical pulses that are finally transmitted via the microelectrode array to the inner retina. The device is capable of eliciting visual perception in a reliable and controllable fashion through video processing and manipulation of stimulation parameters.

Argus II and its predecessor, Argus I, were the first devices tested in humans to pass safety and efficacy assessments. This chapter will summarize the history of device development, initial preclinical studies and results from clinical trials. It will also discuss several future advances needed to improve the device in order to provide a more informative visual perception to blind patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho AC, Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Handa J, et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 2015;122(8):1547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rizzo S, Belting C, Cinelli L, Allegrini L, Genovesi-Ebert F, Barca F, et al. The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center. Am J Ophthalmol. 2014;157(6):1282–90.

    Article  PubMed  Google Scholar 

  3. Nazari H, Zhang L, Zhu D, Chader GJ, Falabella P, Stefanini F, et al. Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015;48:1–39.

    Article  CAS  PubMed  Google Scholar 

  4. Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887–97.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sahni JN, Angi M, Irigoyen C, Semeraro F, Romano MR, Parmeggiani F. Therapeutic challenges to retinitis pigmentosa: from neuroprotection to gene therapy. Curr Genomics. 2011;12(4):276–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santos A, Humayun MS, de Juan E, Jr Greenburg RJ, Marsh MJ, Klock IB. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol. 1997;115(4):511–5.

    Article  CAS  PubMed  Google Scholar 

  7. Stone JL, Barlow WE, Humayun MS, de Juan E, Jr Milam AH. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol. 1992;110(11):1634–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kim SY, Sadda S, Pearlman J, Humayun MS, de Juan E, Jr Melia BM, et al. Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina. 2002;22(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  9. Humayun MS, de Juan E, Jr Dagnelie G, Greenberg RJ, Propst RH, Phillips DH. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol. 1996;114(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  10. Humayun MS, de Juan E, Jr Weiland JD, Dagnelie G, Katona S, Greenberg R, et al. Pattern electrical stimulation of the human retina. Vision Res. 1999;39(15):2569–76.

    Article  CAS  PubMed  Google Scholar 

  11. Rizzo 3rd JF, Wyatt J, Loewenstein J, Kelly S, Shire D. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci. 2003;44(12):5355–61.

    Article  PubMed  Google Scholar 

  12. Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res. 2003;43(24):2573–81.

    Article  PubMed  Google Scholar 

  13. Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine I, Humayun MS. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol. 2007;143(5):820–7.

    Article  PubMed  Google Scholar 

  14. Luo YH, da Cruz L. The Argus II retinal prosthesis system. Prog Retin Eye Res. 2016;50:89–107.

    Article  PubMed  Google Scholar 

  15. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368(9549):1795–809.

    Article  CAS  PubMed  Google Scholar 

  16. Grover S, Fishman GA, Anderson RJ, Tozatti MS, Heckenlively JR, Weleber RG, et al. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. Ophthalmology. 1999;106(9):1780–5.

    Article  CAS  PubMed  Google Scholar 

  17. Coussa RG, Traboulsi EI. Choroideremia: a review of general findings and pathogenesis. Ophthalmic Genet. 2012;33(2):57–65.

    Article  CAS  PubMed  Google Scholar 

  18. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga PE, et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luo YH, da Cruz L. A review and update on the current status of retinal prostheses (bionic eye). Br Med Bull. 2014;109:31–44.

    Article  PubMed  Google Scholar 

  20. Dorn JD, Ahuja AK, Caspi A, da Cruz L, Dagnelie G, Sahel JA, et al. The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol. 2013;131(2):183–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ahuja AK, Yeoh J, Dorn JD, Caspi A, Wuyyuru V, McMahon MJ, et al. Factors affecting perceptual threshold in Argus II retinal prosthesis subjects. Transl Vis Sci Technol. 2013;2(4):1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, et al. Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci. 2009;50(6):3003–8.

    Article  PubMed  Google Scholar 

  23. Cunningham S, Tjan B, Bao P, Falabella P, Weiland J. Tactile-evoked V1 responses in Argus II retinal prosthesis patients assessed with fMRI: a case study. J Vis. 2015;15(12):359.

    Article  Google Scholar 

  24. Luo YH, Davagnanam I, dacCuz L. MRI brain scans in two patients with the argus II retinal prosthesis. Ophthalmology. 2013;120(8):1711. e8

    Google Scholar 

  25. Cunningham SI, Shi Y, Weiland JD, Falabella P, Olmos de Koo LC, Zacks DN, et al. Feasibility of structural and functional MRI acquisition with unpowered implants in Argus II retinal prosthesis patients: a case study. Transl Vis Sci Technol. 2015;4(6):6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Potts AM, Inoue J. The electrically evoked response (EER) of the visual system. II. Effect of adaptation and retinitis pigmentosa. Invest Ophthalmol. 1969;8(6):605–12.

    CAS  PubMed  Google Scholar 

  27. Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol. 1968;196(2):479–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Humayun M, Propst R, de Juan E, Jr McCormick K, Hickingbotham D. Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol. 1994;112(1):110–6.

    Article  CAS  PubMed  Google Scholar 

  29. Greenberg RJ, Velte TJ, Humayun MS, Scarlatis GN, Jr de Juan E. A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans Biomed Eng. 1999;46(5):505–14.

    Article  CAS  PubMed  Google Scholar 

  30. Yue L, Falabella P, Christopher P, Wuyyuru V, Dorn J, Schor P, et al. Ten-Year follow-up of a blind patient chronically implanted with epiretinal prosthesis argus I. Ophthalmology. 2015;122(12):2545–52. e1.

    Google Scholar 

  31. Brummer SB, Turner MJ. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng. 1977;24(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  32. Arsiero M, Cruz LD, Merlini F, Sahel JA, Stanga PE, Hafezi F, et al. Subjects blinded by outer retinal dystrophies are able to recognize shapes using the Argus II retinal prosthesis system. Invest Ophthalmol Vis Sci. 2011;52(14):4951.

    Google Scholar 

  33. da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol. 2013;97(5):632–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luo YH, Zhong JJ, da Cruz L. The use of Argus(R) II retinal prosthesis by blind subjects to achieve localisation and prehension of objects in 3-dimensional space. Graefes Arch Clin Exp Ophthalmol. 2015;253(11):1907–14.

    Article  PubMed  Google Scholar 

  35. Luo YHL, Zhong J, Merlini F, Anaflous F, Arsiero M, Stanga PE, et al. The use of Argus® II retinal prosthesis to identify common objects in blind subjects with outer retinal dystrophies. Invest Ophthalmol Vis Sci. 2014;55(13):1834.

    Google Scholar 

  36. Humayun MS, Dorn JD, Ahuja AK, Caspi A, Filley E, Dagnelie G, et al. Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study. Conf Proc: Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Ann Conf. 2009;2009:4566–8.

    Google Scholar 

  37. Sahel J, Mohand-Said S, Stanga P, Caspi A, Greenberg R. Acuboost™: enhancing the maximum acuity of the Argus II Retinal Prosthesis System. Invest Ophthalmol Vis Sci. 2013;54(15):1389.

    Google Scholar 

  38. Stanga P, Sahel J, Mohand-Said S, da Cruz L, Caspi A, Merlini F, et al. Face detection using the Argus® II retinal prosthesis system. Invest Ophthalmol Vis Sci. 2013;54(15):1766.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Falabella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Falabella, P., Nazari, H., Schor, P., Weiland, J.D., Humayun, M.S. (2017). Argus® II Retinal Prosthesis System. In: Gabel, V. (eds) Artificial Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-41876-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41876-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41874-2

  • Online ISBN: 978-3-319-41876-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics