Skip to main content

Second Primary Neoplasms Following a Diagnosis of Breast Cancer

  • Chapter
  • First Online:
Book cover Breast Cancer Survivorship

Abstract

Many women diagnosed with early breast cancer will be cured and survive for many years after their initial diagnosis. Therefore it is important to take into account the risk of the development of new primary malignancies in such patients. Patients may be predisposed to develop new primary cancers as a result of genetic predisposition, environmental factors, or as a result of the adjuvant therapies used to treat early breast cancer. Treatment-related second primary cancers include an increased risk of breast and lung cancers following adjuvant radiotherapy, hematological malignancies following adjuvant chemotherapy, and endometrial cancer following tamoxifen. As a result of confounding factors the increased risk of these events differs between analyses, but the overall absolute risk of treatment-related second primary cancers remains low. Nonetheless it is important that patients are informed of these risks, modifiable risk factors are addressed and measures to minimize risks are undertaken, particularly when considering adjuvant therapies in women at low risks of recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2010. Bethesda: National Cancer Institute. http://seer.cancer.gov/csr/1975_2010/. Based on November 2012 SEER data submission, posted to the SEER web site; 2013.

  2. Chen Y, et al. Epidemiology of contralateral breast cancer. Cancer Epidemiol Biomarkers Prev. 1999;8(10):855–61.

    CAS  PubMed  Google Scholar 

  3. Heron DE, et al. Bilateral breast carcinoma: risk factors and outcomes for patients with synchronous and metachronous disease. Cancer. 2000;88(12):2739–50.

    Article  CAS  PubMed  Google Scholar 

  4. Hayat MJ, et al. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist. 2007;12(1):20–37.

    Article  PubMed  Google Scholar 

  5. Hankey BF, et al. A retrospective cohort analysis of second breast cancer risk for primary breast cancer patients with an assessment of the effect of radiation therapy. J Natl Cancer Inst. 1983;70(5):797–804.

    CAS  PubMed  Google Scholar 

  6. Nichols HB, et al. Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol. 2011;29(12):1564–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rasmussen CB, et al. Incidence of metachronous contralateral breast cancer in Denmark 1978–2009. Int J Epidemiol. 2014;43(6):1855–64.

    Article  PubMed  Google Scholar 

  8. Schaapveld M, et al. Risk of new primary nonbreast cancers after breast cancer treatment: a Dutch population-based study. J Clin Oncol. 2008;26(8):1239–46.

    Article  PubMed  Google Scholar 

  9. Shankar A, et al. Contralateral breast cancer: a clinico-pathological study of second primaries in opposite breasts after treatment of breast malignancy. Asian Pac J Cancer Prev. 2015;16(3):1207–11.

    Article  PubMed  Google Scholar 

  10. Molina-Montes E, et al. Risk of second cancers cancer after a first primary breast cancer: a systematic review and meta-analysis. Gynecol Oncol. 2015;136(1):158–71.

    Article  PubMed  Google Scholar 

  11. Ricceri F, et al. Risk of second primary malignancies in women with breast cancer: results from the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer. 2015;137(4):940–8.

    Article  CAS  PubMed  Google Scholar 

  12. Early Breast Cancer Trialists’ Collaborative Group, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707–16.

    Google Scholar 

  13. Sadamori N, et al. Incidence of intracranial meningiomas in Nagasaki atomic-bomb survivors. Int J Cancer. 1996;67(3):318–22.

    Article  CAS  PubMed  Google Scholar 

  14. Braunstein S, Nakamura JL. Radiotherapy-induced malignancies: review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front Oncol. 2013;3:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ron E, Modan B, Boice Jr JD. Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol. 1988;127(4):713–25.

    CAS  PubMed  Google Scholar 

  16. Ron E, et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med. 1988;319(16):1033–9.

    Article  CAS  PubMed  Google Scholar 

  17. Watt TC, et al. Radiation-related risk of basal cell carcinoma: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2012;104(16):1240–50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hooning MJ, et al. Roles of radiotherapy and chemotherapy in the development of contralateral breast cancer. J Clin Oncol. 2008;26(34):5561–8.

    Article  PubMed  Google Scholar 

  19. Kirova YM, et al. Second malignancies after breast cancer: the impact of different treatment modalities. Br J Cancer. 2008;98(5):870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kleinerman RA. Radiation-sensitive genetically susceptible pediatric sub-populations. Pediatr Radiol. 2009;39 Suppl 1:S27–31.

    Article  PubMed  Google Scholar 

  21. Berrington de Gonzalez A, et al. Second solid cancers after radiotherapy for breast cancer in SEER cancer registries. Br J Cancer. 2010;102(1):220–6.

    Article  CAS  PubMed  Google Scholar 

  22. Tannock I. The basic science of oncology. 4th ed. New York: McGraw-Hill, Medical Pub. Division; 2005. Chapter 14.

    Google Scholar 

  23. Oeffinger KC, et al. Solid tumor second primary neoplasms: who is at risk, what can we do? Semin Oncol. 2013;40(6):676–89.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Best T, et al. Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma. Nat Med. 2011;17(8):941–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Au WW, Salama SA, Sierra-Torres CH. Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect. 2003;111(15):1843–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mertens AC, et al. XRCC1 and glutathione-S-transferase gene polymorphisms and susceptibility to radiotherapy-related malignancies in survivors of Hodgkin disease. Cancer. 2004;101(6):1463–72.

    Article  CAS  PubMed  Google Scholar 

  27. Broeks A, et al. Radiation-associated breast tumors display a distinct gene expression profile. Int J Radiat Oncol Biol Phys. 2010;76(2):540–7.

    Article  PubMed  Google Scholar 

  28. Henderson TO, et al. Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann Intern Med. 2010;152(7):444–55; W144–54.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Henderson TO, et al. Secondary sarcomas in childhood cancer survivors: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2007;99(4):300–8.

    Article  PubMed  Google Scholar 

  30. Yap J, et al. Sarcoma as a second malignancy after treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2002;52(5):1231–7.

    Article  PubMed  Google Scholar 

  31. Boice Jr JD, et al. Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med. 1992;326(12):781–5.

    Article  PubMed  Google Scholar 

  32. Roychoudhuri R, et al. Radiation-induced malignancies following radiotherapy for breast cancer. Br J Cancer. 2004;91(5):868–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Koh ES, et al. A comparison of mantle versus involved-field radiotherapy for Hodgkin’s lymphoma: reduction in normal tissue dose and second cancer risk. Radiat Oncol. 2007;2:13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. De Bruin ML, et al. Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J Clin Oncol. 2009;27(26):4239–46.

    Article  PubMed  Google Scholar 

  35. Swerdlow AJ, et al. Breast cancer risk after supradiaphragmatic radiotherapy for Hodgkin’s lymphoma in England and Wales: a National Cohort Study. J Clin Oncol. 2012;30(22):2745–52.

    Article  PubMed  Google Scholar 

  36. Donker M, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981–22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014;15(12):1303–10.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Poortmans PM, et al. Internal mammary and medial supraclavicular irradiation in breast cancer. N Engl J Med. 2015;373(4):317–27.

    Article  CAS  PubMed  Google Scholar 

  38. Whelan TJ, et al. Regional nodal irradiation in early-stage breast cancer. N Engl J Med. 2015;373(4):307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Darby SC, et al. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6(8):557–65.

    Article  PubMed  Google Scholar 

  40. Kirova YM, et al. Risk of second malignancies after adjuvant radiotherapy for breast cancer: a large-scale, single-institution review. Int J Radiat Oncol Biol Phys. 2007;68(2):359–63.

    Article  PubMed  Google Scholar 

  41. Grantzau T, et al. Risk of second primary lung cancer in women after radiotherapy for breast cancer. Radiother Oncol. 2014;111(3):366–73.

    Article  PubMed  Google Scholar 

  42. Kaufman EL, et al. Effect of breast cancer radiotherapy and cigarette smoking on risk of second primary lung cancer. J Clin Oncol. 2008;26(3):392–8.

    Article  PubMed  Google Scholar 

  43. Kim DW, et al. Risk of secondary cancers from scattered radiation during intensity-modulated radiotherapies for hepatocellular carcinoma. Radiat Oncol. 2014;9:109.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ron E, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141(3):259–77.

    Article  CAS  PubMed  Google Scholar 

  45. Sigurdson AJ, et al. Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case–control study. Lancet. 2005;365(9476):2014–23.

    Article  PubMed  Google Scholar 

  46. Morton LM, et al. Risk of treatment-related esophageal cancer among breast cancer survivors. Ann Oncol. 2012;23(12):3081–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michels SD, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndrome: a clinical and morphologic study of 65 cases. Blood. 1985;65(6):1364–72.

    CAS  PubMed  Google Scholar 

  48. Kaplan HG, et al. Age related risk of myelodysplastic syndrome and acute myeloid leukemia among breast cancer survivors. Breast Cancer Res Treat. 2013;142(3):629–36.

    Article  CAS  PubMed  Google Scholar 

  49. Le Deley MC, et al. Anthracyclines, mitoxantrone, radiotherapy, and granulocyte colony-stimulating factor: risk factors for leukemia and myelodysplastic syndrome after breast cancer. J Clin Oncol. 2007;25(3):292–300.

    Article  PubMed  CAS  Google Scholar 

  50. Kaplan HG, Malmgren JA, Atwood MK. Increased incidence of myelodysplastic syndrome and acute myeloid leukemia following breast cancer treatment with radiation alone or combined with chemotherapy: a registry cohort analysis 1990–2005. BMC Cancer. 2011;11:260.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smith RE, et al. Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol. 2003;21(7):1195–204.

    Article  CAS  PubMed  Google Scholar 

  52. Calip GS, et al. Myelodysplastic syndrome and acute myeloid leukemia following adjuvant chemotherapy with and without granulocyte colony-stimulating factors for breast cancer. Breast Cancer Res Treat. 2015;154(1):133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Early Breast Cancer Trialists’ Collaborative Group, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379(9814):432–44.

    Google Scholar 

  54. Holdener EE, et al. Second malignant neoplasms in operable carcinoma of the breast. Recent Results Cancer Res. 1984;96:188–96.

    Article  CAS  PubMed  Google Scholar 

  55. Arriagada R, Rutqvist LE. Adjuvant chemotherapy in early breast cancer and incidence of new primary malignancies. Lancet. 1991;338(8766):535–8.

    Article  CAS  PubMed  Google Scholar 

  56. Valagussa P, et al. Second malignancies following CMF-based adjuvant chemotherapy in resectable breast cancer. Ann Oncol. 1994;5(9):803–8.

    CAS  PubMed  Google Scholar 

  57. Herring MK, et al. Second neoplasms after adjuvant chemotherapy for operable breast cancer. Am J Clin Oncol. 1986;9(3):269–75.

    Article  CAS  PubMed  Google Scholar 

  58. Rubagotti A, et al. Risk of new primaries after chemotherapy and/or tamoxifen treatment for early breast cancer. Ann Oncol. 1996;7(3):239–44.

    Article  CAS  PubMed  Google Scholar 

  59. Yi M, et al. Other primary malignancies in breast cancer patients treated with breast conserving surgery and radiation therapy. Ann Surg Oncol. 2013;20(5):1514–21.

    Article  PubMed  Google Scholar 

  60. Leone G, et al. The incidence of secondary leukemias. Haematologica. 1999;84(10):937–45.

    CAS  PubMed  Google Scholar 

  61. Tallman MS, et al. Leukemogenic potential of adjuvant chemotherapy for early-stage breast cancer: the Eastern Cooperative Oncology Group experience. J Clin Oncol. 1995;13(7):1557–63.

    CAS  PubMed  Google Scholar 

  62. Diamandidou E, et al. Treatment-related leukemia in breast cancer patients treated with fluorouracil-doxorubicin-cyclophosphamide combination adjuvant chemotherapy: the University of Texas M.D. Anderson Cancer Center experience. J Clin Oncol. 1996;14(10):2722–30.

    CAS  PubMed  Google Scholar 

  63. Wils JA, et al. Epirubicin plus tamoxifen versus tamoxifen alone in node-positive postmenopausal patients with breast cancer: a randomized trial of the International Collaborative Cancer Group. J Clin Oncol. 1999;17(7):1988–98.

    CAS  PubMed  Google Scholar 

  64. Fumoleau P, et al. Randomized trial comparing six versus three cycles of epirubicin-based adjuvant chemotherapy in premenopausal, node-positive breast cancer patients: 10-year follow-up results of the French Adjuvant Study Group 01 trial. J Clin Oncol. 2003;21(2):298–305.

    Article  CAS  PubMed  Google Scholar 

  65. Levine MN, et al. Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1998;16(8):2651–8.

    CAS  PubMed  Google Scholar 

  66. Henderson IC, et al. Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol. 2003;21(6):976–83.

    Article  CAS  PubMed  Google Scholar 

  67. Citron ML, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21(8):1431–9.

    Article  CAS  PubMed  Google Scholar 

  68. Godley LA, Larson RA. Therapy-related myeloid leukemia. Semin Oncol. 2008;35(4):418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Curtis RE, et al. Risk of leukemia after chemotherapy and radiation treatment for breast cancer. N Engl J Med. 1992;326(26):1745–51.

    Article  CAS  PubMed  Google Scholar 

  70. Haas JF, et al. Risk of leukaemia in ovarian tumour and breast cancer patients following treatment by cyclophosphamide. Br J Cancer. 1987;55(2):213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crump M, et al. Risk of acute leukemia following epirubicin-based adjuvant chemotherapy: a report from the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2003;21(16):3066–71.

    Article  CAS  PubMed  Google Scholar 

  72. Praga C, et al. Risk of acute myeloid leukemia and myelodysplastic syndrome in trials of adjuvant epirubicin for early breast cancer: correlation with doses of epirubicin and cyclophosphamide. J Clin Oncol. 2005;23(18):4179–91.

    Article  CAS  PubMed  Google Scholar 

  73. Bolufer P, et al. Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol. 2007;136(4):590–6.

    Article  CAS  PubMed  Google Scholar 

  74. Larson RA. Etiology and management of therapy-related myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2007:453–9.

    Google Scholar 

  75. Ahuja HG, Felix CA, Aplan PD. Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations. Genes Chromosomes Cancer. 2000;29(2):96–105.

    Article  CAS  PubMed  Google Scholar 

  76. Early Breast Cancer Trialists’ Collaborative Group, et al. Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet. 2015;386(10001):1341–52.

    Google Scholar 

  77. Jones ME, et al. Endometrial cancer survival after breast cancer in relation to tamoxifen treatment: pooled results from three countries. Breast Cancer Res. 2012;14(3):R91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Leeuwen FE, et al. Risk of endometrial cancer after tamoxifen treatment of breast cancer. Lancet. 1994;343(8895):448–52.

    Article  PubMed  Google Scholar 

  79. Bernstein L, et al. Tamoxifen therapy for breast cancer and endometrial cancer risk. J Natl Cancer Inst. 1999;91(19):1654–62.

    Article  CAS  PubMed  Google Scholar 

  80. Morales L, et al. Endometrial safety of third generation aromatase inhibitors versus tamoxifen in breast cancer patients. Int J Gynecol Cancer. 2006;16 Suppl 2:515–7.

    Article  PubMed  Google Scholar 

  81. Morales L, et al. Third generation aromatase inhibitors may prevent endometrial growth and reverse tamoxifen-induced uterine changes in postmenopausal breast cancer patients. Ann Oncol. 2005;16(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  82. Chlebowski RT, et al. Aromatase inhibitors, tamoxifen, and endometrial cancer in breast cancer survivors. Cancer. 2015;121(13):2147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kamigaki Y, Kawakami K. Risk of second cancer after initial treatment of breast cancer: an Osaka Cancer Registry Database study. Oncol Lett. 2011;2(5):963–73.

    PubMed  PubMed Central  Google Scholar 

  84. Early Breast Cancer Trialists’ Collaborative Group, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378(9793):771–84.

    Google Scholar 

  85. Bertelli G, et al. Long-term endometrial effects in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES) – a randomised controlled trial of exemestane versus continued tamoxifen after 2–3 years tamoxifen. Ann Oncol. 2010;21(3):498–505.

    Article  CAS  PubMed  Google Scholar 

  86. Kieback DG, et al. Endometrial effects of exemestane compared to tamoxifen within the Tamoxifen Exemestane Adjuvant Multicenter (TEAM) trial: results of a prospective gynecological ultrasound substudy. Gynecol Oncol. 2010;119(3):500–5.

    Article  CAS  PubMed  Google Scholar 

  87. Davies C, et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381(9869):805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gray RG, et al. aTTom: Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer. J Clin Oncol. 2013;31(suppl):abstr 5.

    Google Scholar 

  89. Hu R, Hilakivi-Clarke L, Clarke R. Molecular mechanisms of tamoxifen-associated endometrial cancer (Review). Oncol Lett. 2015;9(4):1495–501.

    PubMed  PubMed Central  Google Scholar 

  90. Wilder JL, et al. Tamoxifen-associated malignant endometrial tumors: pathologic features and expression of hormone receptors estrogen-alpha, estrogen-beta and progesterone; a case controlled study. Gynecol Oncol. 2004;92(2):553–8.

    Article  CAS  PubMed  Google Scholar 

  91. Bergman L, et al. Risk and prognosis of endometrial cancer after tamoxifen for breast cancer. Comprehensive Cancer Centres’ ALERT Group. Assessment of Liver and Endometrial cancer Risk following Tamoxifen. Lancet. 2000;356(9233):881–7.

    Article  CAS  PubMed  Google Scholar 

  92. Fisher B, et al. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst. 1994;86(7):527–37.

    Article  CAS  PubMed  Google Scholar 

  93. Liu J, et al. Elevated risks of subsequent endometrial cancer development among breast cancer survivors with different hormone receptor status: a SEER analysis. Breast Cancer Res Treat. 2015;150(2):439–45.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med. 2006;354(19):2034–45.

    Article  CAS  PubMed  Google Scholar 

  95. Lyman GH, et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol. 2010;28(17):2914–24.

    Article  PubMed  Google Scholar 

  96. Wang J, et al. Associations of body mass index with cancer incidence among populations, genders, and menopausal status: a systematic review and meta-analysis. Cancer Epidemiol. 2016;42:1–8.

    Article  CAS  PubMed  Google Scholar 

  97. Couch FJ, Nathanson KL, Offit K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science. 2014;343(6178):1466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jegu J, et al. The effect of patient characteristics on second primary cancer risk in France. BMC Cancer. 2014;14:94.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Swerdlow AJ, Jones ME; G. British Tamoxifen Second Cancer Study, Tamoxifen treatment for breast cancer and risk of endometrial cancer: a case-control study. J Natl Cancer Inst. 2005;97(5):375–84.

    Google Scholar 

  100. Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12(5):245–59.

    Article  CAS  PubMed  Google Scholar 

  101. Bernstein JL, et al. Contralateral breast cancer after radiotherapy among BRCA1 and BRCA2 mutation carriers: a WECARE study report. Eur J Cancer. 2013;49(14):2979–85.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Li FP, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.

    CAS  PubMed  Google Scholar 

  103. Hisada M, et al. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst. 1998;90(8):606–11.

    Article  CAS  PubMed  Google Scholar 

  104. Win AK, et al. Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J Natl Cancer Inst. 2012;104(18):1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Morioka T, et al. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice. Cancer Sci. 2015;106(3):217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weischer M, et al. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J Clin Oncol. 2012;30(35):4308–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Donovan EM, et al. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer. Med Phys. 2012;39(10):5814–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Runowicz CD, et al. American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline. CA Cancer J Clin. 2016;66(1):43–73.

    Article  PubMed  Google Scholar 

  109. Corkum M, et al. Screening for new primary cancers in cancer survivors compared to non-cancer controls: a systematic review and meta-analysis. J Cancer Surviv. 2013;7(3):455–63.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navita Somaiah DPhil, FRCR, MD, MBBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paterson, F., Stanway, S., Gothard, L., Somaiah, N. (2016). Second Primary Neoplasms Following a Diagnosis of Breast Cancer. In: Ring, A., Parton, M. (eds) Breast Cancer Survivorship. Springer, Cham. https://doi.org/10.1007/978-3-319-41858-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41858-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41856-8

  • Online ISBN: 978-3-319-41858-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics