Skip to main content

Hemodynamic Monitoring and Fluid Management in ARDS

  • Chapter
  • First Online:
Acute Respiratory Distress Syndrome

Abstract

Acute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality in the ICU affecting as many as 10% of critically ill patients and almost a quarter of mechanically ventilated patients [1, 2]. ARDS is characterized by increased permeability of the alveolar-capillary membrane due to dysregulated, tissue-destructive inflammation. Pulmonary edema, the result of fluid maldistribution, has an adverse impact on respiratory function at several levels including decreased lung compliance, impaired gas exchange, reduction of surfactant levels, and pulmonary hypertension [3]. In the early phase of ARDS, a systemic inflammatory state is usually responsible for hypovolemia. In this phase, early and adequate fluid resuscitation is essential to prevent the development of multiorgan dysfunction, which can impact mortality in patients with ARDS [4]. As the inflammatory state resolves, the excessive fluid can have a detrimental impact on patient outcome. Transition from one phase to another is complex and can often be difficult to distinguish. However, identifying the transition between these two phases is likely to be important for optimization of fluid balance and improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800

    Article  CAS  PubMed  Google Scholar 

  2. Phua J, Badia JR, Adhikari NK et al (2009) Has mortality from acute respiratory distress syndrome decreased over time?: a systematic review. Am J Respir Crit Care Med 179:220–227

    Article  PubMed  Google Scholar 

  3. Roch A, Guervilly C, Papazian L (2011) Fluid management in acute lung injury and ards. Ann Intensive Care 1:16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stapleton RD, Wang BM, Hudson LD et al (2005) Causes and timing of death in patients with ARDS. Chest 128:525–532

    Article  PubMed  Google Scholar 

  5. Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122:2731–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matthay MA, Zimmerman GA (2005) Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 33:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711

    Article  CAS  PubMed  Google Scholar 

  8. Staub NC (1978) Pulmonary edema: physiologic approaches to management. Chest 74:559–564

    Article  CAS  PubMed  Google Scholar 

  9. Arif SK, Verheij J, Groeneveld AB, Raijmakers PG (2002) Hypoproteinemia as a marker of acute respiratory distress syndrome in critically ill patients with pulmonary edema. Intensive Care Med 28:310–317

    Article  PubMed  Google Scholar 

  10. Mangialardi RJ, Martin GS, Bernard GR et al (2000) Hypoproteinemia predicts acute respiratory distress syndrome development, weight gain, and death in patients with sepsis. Ibuprofen in Sepsis Study Group. Crit Care Med 28:3137–3145

    Article  CAS  PubMed  Google Scholar 

  11. Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Engl J Med 353:2788–2796

    Article  CAS  PubMed  Google Scholar 

  12. Jozwiak M, Teboul J-L, Monnet X (2015) Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care 5:38

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koyner JL, Murray PT (2008) Mechanical ventilation and lung-kidney interactions. Clin J Am Soc Nephrol 3:562–570

    Article  PubMed  Google Scholar 

  14. Maharaj R (2012) Extravascular lung water and acute lung injury. Cardiol Res Pract 2012:Article ID 407035 6 pages

    Google Scholar 

  15. Simmons RS, Berdine GG, Seidenfeld JJ et al (1987) Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis 135:924–929

    Article  CAS  PubMed  Google Scholar 

  16. Humphrey H, Hall J, Sznajder I et al (1990) Improved survival in ARDS patients associated with a reduction in pulmonary capillary wedge pressure. Chest 97:1176–1180

    Article  CAS  PubMed  Google Scholar 

  17. Sakr Y, Vincent JL, Reinhart K et al (2005) High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 128:3098–3108

    Article  PubMed  Google Scholar 

  18. Flori HR, Church G, Liu KD et al (2011) Positive fluid balance is associated with higher mortality and prolonged mechanical ventilation in pediatric patients with acute lung injury. Crit Care Res Pract 2011:854142

    PubMed  PubMed Central  Google Scholar 

  19. Sakka SG, Klein M, Reinhart K et al (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086

    Article  PubMed  Google Scholar 

  20. Phillips CR, Chesnutt MS, Smith SM (2008) Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med 36:69–73

    Article  PubMed  Google Scholar 

  21. Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, Malbrain ML (2012) Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care 2(Suppl 1):S1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jozwiak M, Silva S, Persichini R et al (2013) Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med 41:472–480

    Article  PubMed  Google Scholar 

  23. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  Google Scholar 

  24. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228

    Article  CAS  PubMed  Google Scholar 

  25. Tenner S, Baillie J, DeWitt J, Vege SS (2013) American College of Gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol 108:1400–1415 ; 1416

    Article  CAS  PubMed  Google Scholar 

  26. Pham TN, Cancio LC, Gibran NS, American Burn Association (2008) American Burn Association practice guidelines burn shock resuscitation. J Burn Care Res 29:257–266

    Article  PubMed  Google Scholar 

  27. Murphy CV, Schramm GE, Doherty JA et al (2009) The importance of fluid management in acute lung injury secondary to septic shock. Chest 136:102–109

    Article  PubMed  Google Scholar 

  28. Kirov MY (2012) Pulmonary edema in hypovolemic patients: how can we predict it in clinical practice? Crit Care Med 40:994–995

    Article  PubMed  Google Scholar 

  29. Halperin BD, Feeley TW, Mihm FG, Chiles C, Guthaner DF, Blank NE (1985) Evaluation of the portable chest roentgenogram for quantitating extravascular lung water in critically ill adults. Chest 88:649–652

    Article  CAS  PubMed  Google Scholar 

  30. Shyamsundar M, Attwood B, Keating L, Walden AP (2013) Clinical review: the role of ultrasound in estimating extra-vascular lung water. Crit Care 17:237

    Article  PubMed  PubMed Central  Google Scholar 

  31. Michard F (2007) Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls. Crit Care Med 35:1186–1192

    Article  PubMed  Google Scholar 

  32. Kushimoto S, Endo T, Yamanouchi S et al (2013) Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition. Crit Care 17:R132

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fernández-Mondéjar E, Rivera-Fernández R, García-Delgado M, Touma A, Machado J, Chavero J (2005) Small increases in extravascular lung water are accurately detected by transpulmonary thermodilution. J Trauma 59:1420–1423

    Article  PubMed  Google Scholar 

  34. Tagami T, Kushimoto S, Yamamoto Y et al (2010) Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care 14:R162

    Article  PubMed  PubMed Central  Google Scholar 

  35. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL (2007) Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 33:448–453

    Article  PubMed  Google Scholar 

  36. Kushimoto S, Taira Y, Kitazawa Y et al (2012) The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Crit Care 16:R232

    Article  PubMed  PubMed Central  Google Scholar 

  37. Corradi F, Brusasco C, Pelosi P (2014) Chest ultrasound in acute respiratory distress syndrome. Curr Opin Crit Care 20:98–103

    Article  PubMed  Google Scholar 

  38. Bataille B, Rao G, Cocquet P et al (2015) Accuracy of ultrasound B-lines score and E/Ea ratio to estimate extravascular lung water and its variations in patients with acute respiratory distress syndrome. J Clin Monit Comput 29:169–176

    Article  PubMed  Google Scholar 

  39. Baldi G, Gargani L, Abramo A, D’Errico L et al (2013) Lung water assessment by lung ultrasonography in intensive care: a pilot study. Intensive Care Med 39:74–84

    Article  PubMed  Google Scholar 

  40. Enghard P, Rademacher S, Nee J et al (2015) Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care 19:36

    Article  PubMed  PubMed Central  Google Scholar 

  41. Corradi F, Ball L, Brusasco C et al (2013) Assessment of extravascular lung water by quantitative ultrasound and CT in isolated bovine lung. Respir Physiol Neurobiol 187:244–249

    Article  PubMed  Google Scholar 

  42. Copetti R, Soldati G, Copetti P (2008) Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marik PE, Lemson J (2014) Fluid responsiveness: an evolution of our understanding. Br J Anaesth 112:617–620

    Article  CAS  PubMed  Google Scholar 

  44. Marik PE, Cavallazzi R (2013) Does the Central Venous Pressure (CVP) predict fluid responsiveness: an update meta-analysis and a plea for some common sense. Crit Care Med 41:1774–1781

    Article  PubMed  Google Scholar 

  45. Cecconi M, Parsons AK, Rhodes A (2011) What is a fluid challenge? Curr Opin Crit Care 17:290–295

    Article  PubMed  Google Scholar 

  46. Starling EH (1918) The Linacre lecture on the law of the heart, given at Cambridge, 1915, vol 27. Longmans, London

    Google Scholar 

  47. Bruegger D, Jacob M, Rehm M et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999

    Article  CAS  PubMed  Google Scholar 

  48. Bruegger D, Schwartz L, Chappell D et al (2011) Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol 106:1111–1121

    Article  CAS  PubMed  Google Scholar 

  49. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C et al (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68

    Article  PubMed  Google Scholar 

  50. Rizvi K, Deboisblanc BP, Truwit JD et al (2005) Effect of airway pressure display on interobserver agreement in the assessment of vascular pressures in patients with acute lung injury and acute respiratory distress syndrome. Crit Care Med 33:98–103

    Article  CAS  PubMed  Google Scholar 

  51. Guerin L, Monnet X, Teboul JL (2013) Monitoring volume and fluid responsiveness from static to dynamic indicators. Best Pract Res Clin Anaesthesiol 2:177–185

    Article  Google Scholar 

  52. Monnet X, Teboul JL (2013) Assessment of volume responsiveness during mechanical ventilation: recent advances. Crit Care 17:217

    PubMed  PubMed Central  Google Scholar 

  53. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    Article  PubMed  Google Scholar 

  54. Michard F, Descorps-Declere A, Lopes MR (2008) Using pulse pressure variation in patients with acute respiratory distress syndrome. Crit Care Med 36:2946–2948

    Article  PubMed  Google Scholar 

  55. Teboul JL, Monnet X (2013) Pulse pressure variation and ARDS. Minerva Anestesiol 79:398–407

    CAS  PubMed  Google Scholar 

  56. Teboul JL, Monnet X (2008) Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care 14:334–339

    Article  PubMed  Google Scholar 

  57. Muller L, Louart G, Bousquet PJ et al (2010) The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care Med 36:496–503

    Article  PubMed  Google Scholar 

  58. Liu Y, Wei LQ, Li GQ, Yu X, Li GF, Li YM (2016) Pulse pressure variation adjusted by respiratory changes in pleural pressure, rather than by tidal volume, reliably predicts fluid responsiveness in patients with acute respiratory distress syndrome. Crit Care Med 44:342–351

    Article  PubMed  Google Scholar 

  59. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–1837

    Article  PubMed  Google Scholar 

  60. Zhang Z, Xu X, Ye S, Xu L (2014) Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med Biol 40:845–853

    Article  PubMed  Google Scholar 

  61. Muller L, Toumi M, Bousquet PJ et al (2011) An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology 115:541–547

    Article  CAS  PubMed  Google Scholar 

  62. Mallat J, Meddour M, Durville E et al (2015) Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness†. Br J Anaesth 115:449–456

    Article  CAS  PubMed  Google Scholar 

  63. Monnet X, Rienzo M, Osman D et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–1407

    Article  PubMed  Google Scholar 

  64. Monnet X, Teboul JL (2015) Passive leg raising: five rules, not a drop of fluid! Crit Care 19:18

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cavallaro F, Sandroni C, Marano C et al (2010) Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med 36:1475–1483

    Article  PubMed  Google Scholar 

  66. Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1376–1383

    Article  CAS  PubMed  Google Scholar 

  67. Berthiaume Y, Matthay MA (2007) Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 159:350–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Allyn J, Allou N, Dib M et al (2013) Echocardiography to predict tolerance to negative fluid balance in acute respiratory distress syndrome/acute lung injury. J Crit Care 28:1006–1010

    Article  PubMed  Google Scholar 

  69. Grissom CK, Hirshberg EL, Dickerson JB, National Heart Lung and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network et al (2015) Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome*. Crit Care Med 43:288–295

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lum H, Siflinger-Birnboim A, Blumenstock F, Malik AB (1991) Serum albumin decreases trans-endothelial permeability to macromolecules. Microvasc Res 42:91–102

    Article  CAS  PubMed  Google Scholar 

  71. Dull RO, Jo H, Sill H, Hollis TM, Tarbell JM (1991) The effect of varying albumin concentration and hydrostatic pressure on hydraulic conductivity and albumin permeability of cultured endothelial monolayers. Microvasc Res 41:390–407

    Article  CAS  PubMed  Google Scholar 

  72. Guyton AC (1965) Interstitial fluid pressure. II. Pressure-volume curves of interstitial space. Circ Res 16:452–460

    Article  CAS  PubMed  Google Scholar 

  73. Martin GS, Mangialardi RJ, Wheeler AP et al (2002) Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med 30:2175–2182

    Article  CAS  PubMed  Google Scholar 

  74. Gattinoni L, Caspani ML (2002) Albumin and furosemide in acute lung injury: a little step forward? Crit Care Med 30:2376–2377

    Article  CAS  PubMed  Google Scholar 

  75. Martin GS, Moss M, Wheeler AP et al (2005) A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med 33:1681–1687

    Article  CAS  PubMed  Google Scholar 

  76. Roch A, Hraiech S, Dizier S, Papazian L (2013) Pharmacological interventions in acute respiratory distress syndrome. Ann Intensive Care 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mehta D, Bhattacharya J, Matthay MA, Malik AB (2004) Integrated control of lung fluid balance. Am J Phys Lung Cell Mol Phys 287:L1081–L1090

    CAS  Google Scholar 

  78. Perkins GD, McAuley DF, Thickett DR, Gao F (2006) The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 173:281–287

    Article  CAS  PubMed  Google Scholar 

  79. Gates S, Perkins GD, Lamb SE, Kelly C, Thickett DR, Young JD et al (2013) Beta-Agonist Lung injury TrIal-2 (BALTI-2): a multicentre, randomised, double-blind, placebo-controlled trial and economic evaluation of intravenous infusion of salbutamol versus placebo in patients with acute respiratory distress syndrome. Health Technol Assess 17:1–87

    Article  Google Scholar 

  80. Matthay MA, Brower RG, Carson S et al (2011) Randomized, placebo-controlled clinical trial of an aerosolized β2-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 184:561–568

    Article  CAS  PubMed  Google Scholar 

  81. Malbrain ML, Marik PE, Witters I et al (2014) Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther 46:361–380

    Article  PubMed  Google Scholar 

  82. Taccone FS, Castanares-Zapatero D, Peres-Bota D et al (2010) Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocrit Care 12:35–42

    Article  CAS  PubMed  Google Scholar 

  83. Lammi MR, Aiello B, Burg GT et al (2015) Response to fluid boluses in the fluid and catheter treatment trial. Chest 148:919–926

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Hanidziar MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hanidziar, D., Bittner, E.A. (2017). Hemodynamic Monitoring and Fluid Management in ARDS. In: Chiumello, D. (eds) Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-41852-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41852-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41850-6

  • Online ISBN: 978-3-319-41852-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics