Skip to main content

Ventilation Strategies: High-Frequency Oscillatory Ventilation

  • Chapter
  • First Online:
  • 2626 Accesses

Abstract

High-frequency oscillatory ventilation (HFOV) comprises superimposition of pressure oscillations on a continuous positive airway pressure, termed mean airway pressure. Administered tidal volumes (usual range, 40–210 mL) depend on oscillation frequency (usual range, 3.5–10 Hz) and oscillatory pressure amplitude. Theoretically, HFOV is ideal for lung protection in the acute respiratory distress syndrome (ARDS), as it may minimize the risk of volutrauma and atelectrauma. Prior laboratory studies and the pooled results of prior, small randomized controlled trials (RCTs) of HFOV vs. conventional ventilation (CV) in ARDS were suggestive of an HFOV-associated mortality benefit. However, this hypothesis was refuted by the results of two recent large RCTs of HFOV vs. lung-protective CV. The one RCT reported no difference in mortality between treatment arms, whereas the other RCT reported an HFOV-associated harm. The latter result could be partly due to HFOV-induced dysfunction of the right ventricle (RV). In the present chapter, we provide a brief summary of the mechanisms of gas exchange during HFOV and then review published physiological and RCT data, in order to provide a rationale for selecting HFOV settings so as to achieve both lung and RV protection. In this context, we also review available data on the combination of HFOV with tracheal gas insufflation (TGI) and attempt to establish a background for future clinical research involving lung and RV protective HFOV with or without TGI. Future research could also evaluate combination treatments such as prone, lung-protective CV interspersed with supine HFOV.

The contributions of the authors George Karlis and Ioannis N. Pantazopoulos should be considered as equally important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Slutsky AS, Drazen JM (2002) Ventilation with small tidal volumes. N Engl J Med 347:630–631

    Article  PubMed  Google Scholar 

  2. Goffi A, Ferguson ND (2014) High-frequency oscillatory ventilation for early acute respiratory distress syndrome in adults. Curr Opin Crit Care 20:77–85

    Article  PubMed  Google Scholar 

  3. Derdak S (2003) High-frequency oscillatory ventilation for acute respiratory distress syndrome in adult patients. Crit Care Med 31(Suppl):S317–S323

    Article  PubMed  Google Scholar 

  4. Pillow JJ (2005) High frequency oscillatory ventilation: Mechanisms of gas exchange and lung mechanics. Crit Care Med 33(suppl):S135–S141

    Article  PubMed  Google Scholar 

  5. Bohn DJ, Miyasaka K, Marchak BE, Thompson WK, Froese AB, Bryan AC (1980) Ventilation by high frequency oscillation. J Appl Physiol 48:710–716

    CAS  PubMed  Google Scholar 

  6. Brazelton TV, Watson WF, Murphy M, Al-Khandra E, Thompson JE, Arnold JH (2001) Identification of optimal lung volume during high-frequency oscillatory ventilation using respiratory inductive plethysmography. Crit Care Med 29:2349–2359

    Article  PubMed  Google Scholar 

  7. Mehta S, Granton J, MacDonald RJ, Bowman D, Matte-Martyn A, Bachman T, Smith T, Stewart TE (2004) High-frequency oscillatory ventilation in adults: the Toronto experience. Chest 126:518–527

    Article  PubMed  Google Scholar 

  8. Malhotra A, Drazen JM (2013) High-frequency oscillatory ventilation on shaky ground. N Engl J Med 368:863–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spahn DR, Leuthold R, Schmid ER, Niederer PF (1991) Significance of bulk convection during high frequency oscillation. Respir Physiol 84:1–11

    Article  CAS  PubMed  Google Scholar 

  10. Fredberg JJ (1980) Augmented diffusion in the airways can support pulmonary gas exchange. J Appl Physiol 49:446–448

    Google Scholar 

  11. Haselton FR, Scherer PW (1980) Bronchial bifurcations and respiratory mass transport. Science 208:69–71

    Article  CAS  PubMed  Google Scholar 

  12. Ultman JS, Shaw RG, Fabiano DC, Cooke KA (1988) Pendelluft and mixing in a single bifurcation lung model during high-frequency oscillation. J Appl Physiol 65:146–155

    CAS  PubMed  Google Scholar 

  13. Tanida Y (1990) Analysis of gas transport in high frequency ventilation. Front Med Biol Eng 2:181–185

    Google Scholar 

  14. High KC, Ultman JS, Karl SR (1991) Mechanically induced pendelluft flow in a model airway bifurcation during high frequency oscillation. J Biomech Eng 113:342–347

    Article  CAS  PubMed  Google Scholar 

  15. Slutsky AS (1981) Gas mixing by cardiogenic oscillations: a theoretical quantitative analysis. J Appl Physiol 51:1287–1293

    CAS  PubMed  Google Scholar 

  16. Slutsky AS, Brown R (1982) Cardiogenic oscillations: a potential mechanism enhancing oxygenation during apneic respiration. Med Hypotheses 8:393–400

    Article  CAS  PubMed  Google Scholar 

  17. Armengol J, Jones RL, King EG (1985) Collateral ventilation during high-frequency oscillation in dogs. J Appl Physiol 58:173–179

    CAS  PubMed  Google Scholar 

  18. Venegas JG, Fredberg JJ (1994) Understanding the pressure cost of ventilation: why does high frequency ventilation work? Crit Care Med 22:S49–S57

    Article  CAS  PubMed  Google Scholar 

  19. Rossing TH, Slutsky AS, Lehr JL, Drinker PA, Kamm R, Drazen JM (1981) Tidal volume and frequency dependence of carbon dioxide elimination by high-frequency ventilation. N Engl J Med 305:1375–1379

    Article  CAS  PubMed  Google Scholar 

  20. Jaeger MJ, Kurzweg UH, Banner MJ (1984) Transport of gases in high-frequency ventilation. Crit Care Med 12:708–710

    Article  CAS  PubMed  Google Scholar 

  21. Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D (2003) Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J 47(Suppl):15s–25s

    Article  CAS  Google Scholar 

  22. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116(1 Suppl):9S–15S

    Article  CAS  PubMed  Google Scholar 

  23. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307:2526–2533

    Google Scholar 

  24. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  CAS  PubMed  Google Scholar 

  25. [No authors listed] (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1318

    Google Scholar 

  26. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303:865–873

    Article  CAS  PubMed  Google Scholar 

  27. Macklin CC (1939) Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum. Arch Intern Med 64:913–926

    Article  Google Scholar 

  28. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    Article  CAS  PubMed  Google Scholar 

  29. Yalcin HC, Perry SF, Ghadiali SN (2007) Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening. J Appl Physiol 103:1796–1807

    Article  CAS  PubMed  Google Scholar 

  30. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  CAS  PubMed  Google Scholar 

  31. Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, Cutz E, Liu M, Keshavjee S, Martin TR, Marshall JC, Ranieri VM, Slutsky AS (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:2104–2112

    Article  PubMed  Google Scholar 

  32. Plötz FB, Slutsky AS, van Vught AJ, Heijnen CJ (2004) Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med 30:1865–1872

    Article  PubMed  Google Scholar 

  33. Hager DN, Krishnan JA, Hayden DL, Brower RG, Clinical Trials Network ARDS (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245

    Article  PubMed  PubMed Central  Google Scholar 

  34. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755

    Article  CAS  PubMed  Google Scholar 

  35. Froese AB (1997) High-frequency oscillatory ventilation for adult respiratory distress syndrome: let's get it right this time! Crit Care Med 25:906–908

    Article  CAS  PubMed  Google Scholar 

  36. Fessler HE, Derdak S, Ferguson ND, Hager DN, Kacmarek RM, Thompson BT, Brower RG (2007) A protocol for high-frequency oscillatory ventilation in adults: results from a roundtable discussion. Crit Care Med 35:1649–1654

    Article  PubMed  Google Scholar 

  37. Hager DN, Fessler HE, Kaczka DW, Shanholtz CB, Fuld MK, Simon BA, Brower RG (2007) Tidal volume delivery during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 35:1522–1529

    Article  PubMed  Google Scholar 

  38. Pillow JJ, Sly PD, Hantos Z, Bates JH (2002) Dependence of intrapulmonary pressure amplitudes on respiratory mechanics during high-frequency oscillatory ventilation in preterm lambs. Pediatr Res 52:538–544

    Article  PubMed  Google Scholar 

  39. Mentzelopoulos SD, Malachias S, Zintzaras E, Kokkoris S, Zakynthinos E, Makris D, Magira E, Markaki V, Roussos C, Zakynthinos SG (2012) Intermittent recruitment with high-frequency oscillation/tracheal gas insufflation in acute respiratory distress syndrome. Eur Respir J 39:635–647

    Article  CAS  PubMed  Google Scholar 

  40. Mentzelopoulos SD, Malachias S, Kokkoris S, Roussos C, Zakynthinos SG (2010) Comparison of high-frequency oscillation and tracheal gas insufflation versus standard high-frequency oscillation at two levels of tracheal pressure. Intensive Care Med 36:810–816

    Article  PubMed  Google Scholar 

  41. Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG, Carlin B, Lowson S, Granton J, Multicenter Oscillatory Ventilation For Acute Respiratory Distress Syndrome Trial (MOAT) Study Investigators (2002) High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 166:801–808

    Article  PubMed  Google Scholar 

  42. Bollen CW, van Well GT, Sherry T, Beale RJ, Shah S, Findlay G, Monchi M, Chiche JD, Weiler N, Uiterwaal CS, van Vught AJ (2005) High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care 9:R430–R439

    Article  PubMed  PubMed Central  Google Scholar 

  43. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, OSCAR Study Group (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 368:806–813

    Article  CAS  PubMed  Google Scholar 

  44. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO, OSCILLATE Trial Investigators; Canadian Critical Care Trials Group (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368:795–805

    Article  CAS  PubMed  Google Scholar 

  45. Mentzelopoulos SD, Roussos C, Koutsoukou A, Sourlas S, Malachias S, Lachana A, Zakynthinos SG (2007) Acute effects of combined high-frequency oscillation and tracheal gas insufflation in severe acute respiratory distress syndrome. Crit Care Med 35:1500–1508

    Article  PubMed  Google Scholar 

  46. Mentzelopoulos SD, Theodoridou M, Malachias S, Sourlas S, Exarchos DN, Chondros D, Roussos C, Zakynthinos SG (2011) Scanographic comparison of high frequency oscillation with versus without tracheal gas insufflation in acute respiratory distress syndrome. Intensive Care Med 37:990–999

    Article  PubMed  Google Scholar 

  47. Vrettou CS, Zakynthinos SG, Malachias S, Mentzelopoulos SD (2013) High-frequency oscillation and tracheal gas insufflation in patients with severe acute respiratory distress syndrome and traumatic brain injury: an interventional physiological study. Crit Care 17:R136

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vrettou CS, Zakynthinos SG, Malachias S, Mentzelopoulos SD (2014) The effect of high-frequency oscillatory ventilation combined with tracheal gas insufflation on extravascular lung water in patients with acute respiratory distress syndrome: a randomized, crossover, physiologic study. J Crit Care 29:568–573

    Article  PubMed  Google Scholar 

  49. Papazian L, Gainnier M, Marin V, Donati S, Arnal JM, Demory D, Roch A, Forel JM, Bongrand P, Brégeon F, Sainty JM (2005) Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med 33:2162–2171

    Article  PubMed  Google Scholar 

  50. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608

    CAS  PubMed  Google Scholar 

  51. Camporota L, Sherry T, Smith J, Lei K, McLuckie A, Beale R (2013) Physiological predictors of survival during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care 17:R40

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786

    Article  CAS  PubMed  Google Scholar 

  53. Fessler HE, Hager DN, Brower RG (2008) Feasibility of very high-frequency ventilation in adults with acute respiratory distress syndrome. Crit Care Med 36:1043–1048

    Article  PubMed  Google Scholar 

  54. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, Caspani L, Raimondi F, Bordone G, Iapichino G, Mancebo J, Guérin C, Ayzac L, Blanch L, Fumagalli R, Tognoni G, Gattinoni L, Prone-Supine II Study Group (2009) Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 302:1977–1984

    Article  CAS  PubMed  Google Scholar 

  55. Dreyfuss D, Ricard JD, Gaudry S (2015) Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago. Intensive Care Med 41:2076–2086

    Article  PubMed  Google Scholar 

  56. Hamilton PP, Onayemi A, Smyth JA, Gillan JE, Cutz E, Froese AB, Bryan AC (1983) Comparison of conventional and high frequency ventilation. J Appl Physiol 55:131–138

    CAS  PubMed  Google Scholar 

  57. McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high-frequency ventilation in surfactant-depleted rabbits. Am Rev Respir Dis 137:1185–1192

    Article  CAS  PubMed  Google Scholar 

  58. Meredith KS, deLemos RA, Coalson JJ, King RJ, Gerstmann DR, Kumar R, Kuehl TJ, Winter DC, Taylor A, Clark RH et al (1989) Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons. J Appl Physiol 66:2150–2158

    CAS  PubMed  Google Scholar 

  59. Matsuoka T, Kawano T, Miyasaka K (1994) Role of high-frequency ventilation in surfactant-depleted lung injury as measured by granulocytes. J Appl Physiol 79:539–544

    Google Scholar 

  60. Imai Y, Kawano T, Miyasaka K, Takata M, Imai T, Okuyama K (1994) Inflammatory chemical mediators during conventional ventilation and high frequency oscillatory ventilation. Am J Respir Crit Care Med 150:1550–1554

    Article  CAS  PubMed  Google Scholar 

  61. Takata M, Abe J, Tanaka H, Kitano Y, Doi S, Kohsaka T, Miyasaka K (1997) Intraalveolar expression of tumor necrosis factor-alpha gene during conventional and high frequency ventilation. Am J Respir Crit Care Med 156:272–279

    Article  CAS  PubMed  Google Scholar 

  62. von der Hardt K, Kandler MA, Fink L, Schoof E, Dötsch J, Brandenstein O, Bohle RM, Rascher W (2004). High frequency ventilation suppresses inflammatory response in lung tissue and microdissected alveolar macrophages in surfactant depleted piglets. Pediatr Res 55:339–346

    Google Scholar 

  63. de Prost N, Dreyfuss D, Saumon G (2007) Evaluation of two-way protein fluxes across the alveolo-capillary membrane by scintigraphy in rats: effect of lung inflation. J Appl Physiol 102:794–802

    Article  PubMed  CAS  Google Scholar 

  64. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:148102

    Article  CAS  PubMed  Google Scholar 

  65. Huh D, Fujioka H, Tung YC, Futai N, Paine R 3rd, Grotberg JB, Takayama S (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci U S A 104:18886–188891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brusasco V, Beck KC, Crawford M, Rehder K (1986) Resonant amplification of delivered volume during high-frequency ventilation. J Appl Physiol 60:885–892

    CAS  PubMed  Google Scholar 

  67. Marini JJ (2015) Does high-pressure, high-frequency oscillation shake the foundations of lung protection? Intensive Care Med 41:2210–2212

    Article  PubMed  Google Scholar 

  68. Vlahakis NE, Hubmayr RD (2005) Cellular stress failure in ventilator-injured lungs. Am J Respir Crit Care Med 171:1328–1342

    Article  PubMed  PubMed Central  Google Scholar 

  69. Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L (2011) Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med 183:1354–1362

    Article  PubMed  Google Scholar 

  70. Simon BA, Weinmann GG, Mitzner W (1984) Mean airway pressure and alveolar pressure during high-frequency ventilation. J Appl Physiol Respir Environ Exerc Physiol 57:1069–1078

    CAS  PubMed  Google Scholar 

  71. Allen JL, Frantz ID 3rd, Fredberg JJ (1985) Regional alveolar pressure during periodic flow. Dual manifestations of gas inertia. J Clin Invest 76:620–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsuda A, Kamm R, Fredberg JJ (1990) Periodic flow at airway bifurcations. II. Flow partitioning. J Appl Physiol 69:553–561

    CAS  PubMed  Google Scholar 

  73. Tsuda A, Fredberg JJ (1990) Periodic flow at airway bifurcations. I. Development of steady pressure differences. J Appl Physiol 69:546–552

    CAS  PubMed  Google Scholar 

  74. Monchi M, Bellenfant F, Cariou A, Joly LM, Thebert D, Laurent I, Dhainaut JF, Brunet F (1998) Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 158:1076–1081

    Article  CAS  PubMed  Google Scholar 

  75. Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–892

    Article  CAS  PubMed  Google Scholar 

  76. Bouferrache K, Vieillard-Baron A (2011) Acute respiratory distress syndrome, mechanical ventilation, and right ventricular function. Curr Opin Crit Care 17:30–35

    Article  PubMed  Google Scholar 

  77. Mekontso Dessap A, Charron C, Devaquet J, Aboab J, Jardin F, Brochard L, Vieillard-Baron A (2009) Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 35:1850–1858

    Article  PubMed  PubMed Central  Google Scholar 

  78. Guérin C, Matthay MA (2016) Acute cor pulmonale and the acute respiratory distress syndrome. Intensive Care Med. [Epub ahead of print]. doi:10.1007/s00134-015-4197-z

  79. Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M, Barreau-Baumstark K, Castanier M, Papazian L, Roch A (2012) Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 40:1539–1545

    Article  PubMed  Google Scholar 

  80. Mekontso Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A (2016). Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42:862-870

    Google Scholar 

  81. Vieillard-Baron A, Jardin F (2003) Why protect the right ventricle in patients with acute respiratory distress syndrome? Curr Opin Crit Care 9:15–21

    Article  PubMed  Google Scholar 

  82. Jardin F, Vieillard-Baron A (2005) Monitoring of right-sided heart function. Curr Opin Crit Care 11:271–279

    Article  PubMed  Google Scholar 

  83. Woods J, Monteiro P, Rhodes A (2007) Right ventricular dysfunction. Curr Opin Crit Care 13:532–540

    PubMed  Google Scholar 

  84. Jardin F, Vieillard-Baron A (2009) Acute cor pulmonale. Curr Opin Crit Care 15:67–70

    Article  PubMed  Google Scholar 

  85. Bull TM, Clark B, McFann K, Moss M, National Institutes of Health/National Heart, Lung, and Blood Institute ARDS Network (2010) Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med 182:1123–1128

    Article  PubMed  PubMed Central  Google Scholar 

  86. Granstam SO, Björklund E, Wikström G, Roos MW (2013) Use of echocardiographic pulmonary acceleration time and estimated vascular resistance for the evaluation of possible pulmonary hypertension. Cardiovasc Ultrasound 11:7

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ursulet L, Roussiaux A, Belcour D, Ferdynus C, Gauzere BA, Vandroux D, Jabot J (2015) Right over left ventricular end-diastolic area relevance to predict hemodynamic intolerance of high-frequency oscillatory ventilation in patients with severe ARDS. Ann Intensive Care 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vieillard-Baron A, Price LC, Matthay MA (2013) Acute cor pulmonale in ARDS. Intensive Care Med 39:1836–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chan KPW, Stewart TE, Mehta S (2007) High frequency oscillatory ventilation for adult patients with ARDS. Chest 131:1907–1916

    Article  PubMed  Google Scholar 

  90. Latronico N, Peli E, Botteri M (2005) Critical illness myopathy and neuropathy. Curr Opin Crit Care 11:126–132

    Article  PubMed  Google Scholar 

  91. Sweeney AM, Lyle J, Ferguson ND (2005) Nursing and infection control issues during high-frequency oscillatory ventilation. Crit Care Med 33(Suppl):S204–S208

    Article  PubMed  Google Scholar 

  92. David M, von Bardeleben RS, Weiler N, Markstaller K, Scholz A, Karmrodt J, Eberle B (2004) Cardiac function and haemodynamics during transition to high-frequency oscillatory ventilation. Eur J Anaesthesiol 21:944–952

    Article  CAS  PubMed  Google Scholar 

  93. Adhikari NK, Bashir A, Lamontagne F, Mehta S, Ferguson ND, Zhou Q, Hand L, Czarnecka K, Cook DJ, Granton JT, Friedrich JO, Freitag A, Watpool I, Meade MO (2011) High-frequency oscillation in adults: a utilization review. Crit Care Med 39:2631–2644

    Article  PubMed  Google Scholar 

  94. Maitra S, Bhattacharjee S, Khanna P, Baidya DK (2015) High-frequency ventilation does not provide mortality benefit in comparison with conventional lung-protective ventilation in acute respiratory distress syndrome: a meta-analysis of the randomized controlled trials. Anesthesiology 122:841–851

    Article  PubMed  Google Scholar 

  95. Mentzelopoulos SD, Malachias S, Vrettou C, Zakynthinos SG (2016) Meta-analysis of High-frequency Oscillation in Acute Respiratory Distress Syndrome and Accuracy of Results. Anesthesiology 124:246–247

    Article  PubMed  Google Scholar 

  96. Huang CT, Lin HH, Ruan SY, Lee MS, Tsai YJ, Yu CJ (2014) Efficacy and adverse events of high-frequency oscillatory ventilation in adult patients with acute respiratory distress syndrome: a meta-analysis. Crit Care 18:R102

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gu XL, Wu GN, Yao YW, Shi DH, Song Y (2014) Is high-frequency oscillatory ventilation more effective and safer than conventional protective ventilation in adult acute respiratory distress syndrome patients? A meta-analysis of randomized controlled trials. Crit Care 18:R111

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pelosi P, Sutherasan Y (2013) High-frequency oscillatory ventilation with tracheal gas insufflation: the rescue strategy for brain-lung interaction. Crit Care 17:R179

    Google Scholar 

  99. Nahum A (1998) Equipment review: tracheal gas insufflation. Crit Care 2:43–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Demory D, Michelet P, Arnal JM, Donati S, Forel JM, Gainnier M, Brégeon F, Papazian L (2007) High-frequency oscillatory ventilation following prone positioning prevents a further impairment in oxygenation. Crit Care Med 35:106–111

    Article  PubMed  Google Scholar 

  101. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, Malacrida R, Di Giulio P, Fumagalli R, Pelosi P, Brazzi L, Latini R, Prone-Supine Study Group (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573

    Article  CAS  PubMed  Google Scholar 

  102. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L, PROSEVA Study Group (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–2168

    Article  PubMed  CAS  Google Scholar 

  103. Mehta S, MacDonald R, Hallett DC, Lapinsky SE, Aubin M, Stewart TE (2003) Acute oxygenation response to inhaled nitric oxide when combined with high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 31:383–389

    Article  CAS  PubMed  Google Scholar 

  104. Ricciardolo FL, Di Stefano A, Sabatini F, Folkerts G (2006) Reactive nitrogen species in the respiratory tract. Eur J Pharmacol 533:240–252

    Article  CAS  PubMed  Google Scholar 

  105. Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, Adhikari NK (2010) High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 340:c2327

    Article  PubMed  Google Scholar 

  106. Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG (2005) Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials 2:209–207

    Article  PubMed  Google Scholar 

  107. Mentzelopoulos SD, Roussos C, Zakynthinos SG (2005) Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J 25:534–544

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros D. Mentzelopoulos MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mentzelopoulos, S.D., Karlis, G., Pantazopoulos, I.N., Vrettou, C. (2017). Ventilation Strategies: High-Frequency Oscillatory Ventilation. In: Chiumello, D. (eds) Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-41852-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41852-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41850-6

  • Online ISBN: 978-3-319-41852-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics