Skip to main content

Stem Cells and Their Immunomodulatory Potential for the Treatment of ARDS

  • Chapter
  • First Online:
Acute Respiratory Distress Syndrome

Abstract

Mesenchymal Stromal/Stem Cells (MSCs) have potent immunomodulatory and anti-bacterial properties that are being investigated as treatment for sepsis and acute respiratory distress syndrome (ARDS). Importantly, because they express various membrane pattern and damage recognition receptors, MSCs can detect specific micro-inflammatory environments and tailor their pleotropic responses accordingly. This raises the possibility that MSCs can be altered to optimize their therapeutic ability. Various mechanistic explanations have been proposed for how these cells exert their beneficial effects, including their ability and potential to: (i) Enhance tissue-endogenous stem/progenitor cell activity; (ii) Regulate genes that modulate the response to injury and repair; (iii) Transfer of cellular and genomic contents such as mitochondria and microRNAs; and (iv) Secrete paracrine factors that target key aspects of the pathophysiology of injury and repair in ARDS. This chapter focuses on summarizing current knowledge on the immunomodulatory actions of MSCs as novel immunotherapeutics for the treatment of ARDS/sepsis and the translation of new knowledge to clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellani G et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800

    Article  CAS  PubMed  Google Scholar 

  2. Clark BJ, Moss M (2016) The acute respiratory distress syndrome: dialing in the evidence? JAMA 315:759–761

    Article  PubMed  Google Scholar 

  3. Herridge MS et al (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693

    Article  PubMed  Google Scholar 

  4. Herridge MS et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304

    Article  CAS  PubMed  Google Scholar 

  5. Annane D (2009) Improving clinical trials in the critically ill: unique challenge–sepsis. Crit Care Med 37:S117–S128

    Article  PubMed  Google Scholar 

  6. Angus DC, Mira JP, Vincent JL (2010) Improving clinical trials in the critically ill. Crit Care Med 38:527–532

    Article  PubMed  Google Scholar 

  7. Zeni F, Freeman B, Natanson C (1997) Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 25:1095–1100

    Article  CAS  PubMed  Google Scholar 

  8. Eichacker PQ et al (2002) Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am J Respir Crit Care Med 166:1197–1205

    Article  PubMed  Google Scholar 

  9. Marshall JC (2003) Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov 2:391–405

    Article  CAS  PubMed  Google Scholar 

  10. Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA (2009) The sepsis seesaw: tilting toward immunosuppression. Nat Med 15:496–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mongardon N, Dyson A, Singer M (2009) Is MOF an outcome parameter or a transient, adaptive state in critical illness? Curr Opin Crit Care 15:431–436

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dyson A, Singer M (2009) Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Crit Care Med 37:S30–S37

    Article  PubMed  Google Scholar 

  13. Monneret G, Venet F (2010) Immunomodulatory cell therapy in sepsis: have we learnt lessons from the past? Expert Rev Anti Infect Ther 8:1109–1112

    Article  CAS  PubMed  Google Scholar 

  14. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716

    Article  CAS  PubMed  Google Scholar 

  15. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  16. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  CAS  PubMed  Google Scholar 

  18. Honczarenko M et al (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    Article  CAS  PubMed  Google Scholar 

  19. Hung SC et al (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2:e416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67:1772–1784

    Article  PubMed  Google Scholar 

  21. Zhu H et al (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24:928–935

    Article  CAS  PubMed  Google Scholar 

  22. Goransson V et al (2004) Renal hyaluronan accumulation and hyaluronan synthase expression after ischaemia-reperfusion injury in the rat. Nephrol Dial Transplant 19:823–830

    Article  PubMed  CAS  Google Scholar 

  23. Herrera MB et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–441

    Article  CAS  PubMed  Google Scholar 

  24. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    Article  CAS  PubMed  Google Scholar 

  25. Weiss DJ, Bates JHT, Gilbert T, Liles WC, Lutzko C, Rajagopal J, Prockop DJ (2013) Vermont stem cell conference report: stem cells and cell therapies in lung biology and diseases. Ann Am Thorac Soc 10:25–44

    Article  Google Scholar 

  26. Matthay MA et al (2013) Cell therapy for lung diseases. Report from an NIH-NHLBI workshop, November 13-14, 2012. Am J Respir Crit Care Med 188:370–375

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bianco P et al (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prockop DJ, Oh JY (2012) Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem 113:1460–1469

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20

    Article  CAS  Google Scholar 

  30. Ortiz LA et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100:8407–8411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Islam MN et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mei SH et al (2007) Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 4:e269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. McCarter SD et al (2007) Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med 175:1014–1026

    Article  CAS  PubMed  Google Scholar 

  34. Xu J et al (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293:L131–L141

    Article  CAS  PubMed  Google Scholar 

  35. Rojas M, Woods CR, Mora AL, Xu J, Brigham KL (2005) Endotoxin-induced lung injury in mice: structural, functional, and biochemical responses. Am J Physiol Lung Cell Mol Physiol 288:L333–L341

    Article  CAS  PubMed  Google Scholar 

  36. Mei SH et al (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057

    Article  CAS  PubMed  Google Scholar 

  37. Krasnodembskaya A et al (2012) Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol 302:L1003–L1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee JW et al (2013) Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 187:751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McIntyre LA et al (2016) Efficacy of mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: a systematic review. PLoS One 11:e0147170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lalu MM et al (2014) Efficacy and safety of mesenchymal stromal cells in preclinical models of acute lung injury: a systematic review protocol. Syst Rev 3:48

    Article  PubMed  PubMed Central  Google Scholar 

  41. Devaney J et al (2015) Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 70:625–635

    Article  PubMed  Google Scholar 

  42. El Kebir D et al (2009) 15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med 180:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta N et al (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863

    Article  CAS  PubMed  Google Scholar 

  44. Gotts JE, Matthay MA (2014) Endogenous and exogenous cell-based pathways for recovery from acute respiratory distress syndrome. Clin Chest Med 35:797–809

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu KD et al (2014) Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Ann Intensive Care 4:22

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wilson JG et al (2015) Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med 3:24–32

    Article  PubMed  Google Scholar 

  47. Galipeau J et al (2016) International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18:151–159

    Article  CAS  PubMed  Google Scholar 

  48. Klimczak A, Kozlowska U (2016) Mesencheymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int 2016:1–12

    Google Scholar 

  49. Bertoncello I, McQualter JL (2013) Lung stem cells: do they exist? Respirology 18:587–595

    Article  PubMed  Google Scholar 

  50. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Article  CAS  PubMed  Google Scholar 

  51. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci U S A 100(Suppl 1):11917–11923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Savukinas UB, Enes SR, Sjoland AA, Westergren-Thorsson G (2016) The bystander effect: MSC-mediated lung repair. Stem Cells 4(6):1437–1444

    Article  Google Scholar 

  53. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102:18171–18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fatar M et al (2008) Lipoaspirate-derived adult mesenchymal stem cells improve functional outcome during intracerebral hemorrhage by proliferation of endogenous progenitor cells stem cells in intracerebral hemorrhages. Neurosci Lett 443:174–178

    Article  CAS  PubMed  Google Scholar 

  55. Shin L, Peterson DA (2013) Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl Med 2:33–42

    Article  CAS  PubMed  Google Scholar 

  56. Burdon TJ, Paul A, Noiseux N, Prakash S, Shum-Tim D (2011) Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone Marrow Res 2011:207326

    Article  PubMed  Google Scholar 

  57. Kumar ME et al (2014) Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution. Science 346:1258810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hogan BL et al (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15:123–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu HM, Ma LJ, Wu JZ, Li YG (2015) MSCs relieve lung injury of COPD mice through promoting proliferation of endogenous lung stem cells. J Huazhong Univ Sci Technolog Med Sci 35:828–833

    Article  CAS  PubMed  Google Scholar 

  60. Weiss DJ (2014) Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells 32:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tropea KA et al (2012) Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 302:L829–L837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rock JR et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108:E1475–E1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leeman KT, Fillmore CM, Kim CF (2014) Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol 107:207–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kinnaird T et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Article  CAS  PubMed  Google Scholar 

  65. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506

    Article  CAS  PubMed  Google Scholar 

  66. Beyth S et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219

    Article  CAS  PubMed  Google Scholar 

  67. Corcione A et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    Article  CAS  PubMed  Google Scholar 

  68. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827

    Article  CAS  PubMed  Google Scholar 

  69. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    Article  CAS  PubMed  Google Scholar 

  70. Benvenuto F et al (2007) Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 25:1753–1760

    Article  CAS  PubMed  Google Scholar 

  71. Rafei M et al (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112:4991–4998

    Article  CAS  PubMed  Google Scholar 

  72. Comoli P et al (2008) Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant 23:1196–1202

    Article  CAS  PubMed  Google Scholar 

  73. Krampera M et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398

    Article  CAS  PubMed  Google Scholar 

  74. Ortiz LA et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104:11002–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lama VN et al (2007) Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 117:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rolandsson S et al (2014) Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells. BMJ Open Respir Res 1:e000027

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A 106:16357–16362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lan YW et al (2015) Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem cell Res Ther 6:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Katsha AM et al (2011) Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther 19:196–203

    Article  CAS  PubMed  Google Scholar 

  80. Chen QH, Liu AR, Qiu HB, Yang Y (2015) Interaction between mesenchymal stem cells and endothelial cells restores endothelial permeability via paracrine hepatocyte growth factor in vitro. Stem cell Res Ther 6:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Atabai K et al (2002) Keratinocyte growth factor can enhance alveolar epithelial repair by nonmitogenic mechanisms. Am J Physiol Lung Cell Mol Physiol 283:L163–L169

    Article  CAS  PubMed  Google Scholar 

  82. Gonzalez-Rey E et al (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58:929–939

    Article  CAS  PubMed  Google Scholar 

  83. Nemeth K et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  CAS  PubMed  Google Scholar 

  84. Sutton MT et al (2016) Antimicrobial properties of mesenchymal stem cells: therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int 2016:5303048

    Article  PubMed  PubMed Central  Google Scholar 

  85. Amatullah H, Shan Y, Beauchamp BL, Gali PL, Gupta S (2016) Canadian critical care translational biology group (CCCTBG). DJ-1/PARK7 impairs bacterial clearance in sepsis. Am J Respir Crit Care Med. [Epub ahead of print]

    Google Scholar 

  86. Sung DK et al (2016) Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell Microbiol 18:424–436

    Article  CAS  PubMed  Google Scholar 

  87. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110:9415–9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pinto AR et al (2012) An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One 7:e36814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tomchuck SL et al (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26:99–107

    Article  CAS  PubMed  Google Scholar 

  90. Maggini J et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5:e9252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cho DI et al (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46:e70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aurora AB et al (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402

    Article  CAS  PubMed  Google Scholar 

  95. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5:e10088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Le Blanc K, Davies LC (2015) Mesenchymal stromal cells and the innate immune response. Immunol Lett 168:140–146

    Article  CAS  PubMed  Google Scholar 

  97. Zhao YD et al (2014) Endothelial FoxM1 mediates bone marrow progenitor cell-induced vascular repair and resolution of inflammation following inflammatory lung injury. Stem Cells 32:1855–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. dos Santos CC et al (2012) Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis. Am J Pathol 181:1681–1692

    Article  CAS  PubMed  Google Scholar 

  99. Mohammadzadeh A et al (2014) Immunomodulatory effects of adipose-derived mesenchymal stem cells on the gene expression of major transcription factors of T cell subsets. Int Immunopharmacol 20:316–321

    Article  CAS  PubMed  Google Scholar 

  100. Huang B, Li G, Jiang XH (2015) Fate determination in mesenchymal stem cells: a perspective from histone-modifying enzymes. Stem Cell Res Ther 6:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Elgin SC (1996) Heterochromatin and gene regulation in Drosophila. Curr Opin Genet Dev 6:193–202

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Z, Maiman DJ, Kurpad SN, Crowe MJ, Alexanian AR (2011) Feline bone marrow-derived mesenchymal stem cells express several pluripotent and neural markers and easily turn into neural-like cells by manipulation with chromatin modifying agents and neural inducing factors. Cell Reprogram 13:385–390

    CAS  PubMed  Google Scholar 

  103. Yu YL et al (2011) EZH2 regulates neuronal differentiation of mesenchymal stem cells through PIP5K1C-dependent calcium signaling. J Biol Chem 286:9657–9667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jeong SG, Ohn T, Kim SH, Cho GW (2013) Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells. Neurosci Lett 554:22–27

    Article  CAS  PubMed  Google Scholar 

  105. Li L, Zhu J, Tian J, Liu X, Feng C (2010) A role for Gcn5 in cardiomyocyte differentiation of rat mesenchymal stem cells. Mol Cell Biochem 345:309–316

    Article  CAS  PubMed  Google Scholar 

  106. Culmes M et al (2013) Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur J Cell Biol 92:70–79

    Article  CAS  PubMed  Google Scholar 

  107. Ronningen T, Shah A, Reiner AH, Collas P, Moskaug JO (2015) Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells. Biochem Biophys Res Commun 467:979–986

    Article  PubMed  CAS  Google Scholar 

  108. Choudry FA, Frontini M (2016) Epigenetic control of haematopoietic stem cell aging and its clinical implications. Stem Cells Int 2016:5797521

    Article  PubMed  Google Scholar 

  109. Alexanian AR, Liu QS, Zhang Z (2013) Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes. SMAD signaling and cyclic adenosine monophosphate levels. Int J Biochem Cell Biol 45:1633–1638

    Article  CAS  PubMed  Google Scholar 

  110. Ankrum JA, Dastidar RG, Ong JF, Levy O, Karp JM (2014) Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids. Sci Rep 4:4645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  112. Marzo L, Gousset K, Zurzolo C (2012) Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 3:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gerdes HH, Bukoreshtliev NV, Barroso JF (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581:2194–2201

    Article  CAS  PubMed  Google Scholar 

  114. Lou E et al (2012) Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 7:e33093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Abounit S, Zurzolo C (2012) Wiring through tunneling nanotubes–from electrical signals to organelle transfer. J Cell Sci 125:1089–1098

    Article  CAS  PubMed  Google Scholar 

  116. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103:1283–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. King MP, Attardi G (1988) Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52:811–819

    Article  CAS  PubMed  Google Scholar 

  118. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246:500–503

    Article  CAS  PubMed  Google Scholar 

  119. Phinney DG et al (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 6:8472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ahmad T et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  122. Turturici G, Tinnirello R, Sconzo G, Geraci F (2014) Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 306:C621–C633

    Article  CAS  PubMed  Google Scholar 

  123. Tetta C, Bruno S, Fonsato V, Deregibus MC, Camussi G (2011) The role of microvesicles in tissue repair. Organogenesis 7:105–115

    Article  PubMed  PubMed Central  Google Scholar 

  124. Camussi G et al (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110

    PubMed  Google Scholar 

  125. Gatti S et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  CAS  PubMed  Google Scholar 

  126. Nawaz M et al (2016) Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int 2016:1073140

    Article  PubMed  Google Scholar 

  127. Ratajczak J et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  CAS  PubMed  Google Scholar 

  128. Grange C et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71:5346–5356

    Article  CAS  PubMed  Google Scholar 

  129. Bauer N et al (2011) Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles–a role of the endocytic-exocytic pathway. EMBO Mol Med 3:398–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rappa G et al (2013) Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells. Exp Cell Res 319:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Huttner HB et al (2008) The stem cell marker prominin-1/CD133 on membrane particles in human cerebrospinal fluid offers novel approaches for studying central nervous system disease. Stem Cells 26:698–705

    Article  CAS  PubMed  Google Scholar 

  132. Xiao H et al (2014) Mast cell exosomes promote lung adenocarcinoma cell proliferation – role of KIT-stem cell factor signaling. Cell Commun Signal 12:64

    PubMed  PubMed Central  Google Scholar 

  133. Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14:1036–1045

    Article  CAS  PubMed  Google Scholar 

  134. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gradilla AC et al (2014) Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 5:5649

    Article  CAS  PubMed  Google Scholar 

  136. Nair R et al (2014) Extracellular vesicles derived from preosteoblasts influence embryonic stem cell differentiation. Stem Cells Dev 23:1625–1635

    Article  CAS  PubMed  Google Scholar 

  137. McIver SC et al (2014) The exosome complex establishes a barricade to erythroid maturation. Blood 124:2285–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Forterre A et al (2014) Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle 13:78–89

    Article  CAS  PubMed  Google Scholar 

  139. Anderson JD et al (2016) Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via NFkB signaling. Stem Cells 34(3):601–613

    Article  CAS  PubMed  Google Scholar 

  140. Rosova I, Dao M, Capoccia B, Link D, Nolta JA (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26:2173–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Beegle J et al (2015) Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 33:1818–1828

    Article  CAS  PubMed  Google Scholar 

  142. Hultin-Rosenberg L, Forshed J, Branca RM, Lehtio J, Johansson HJ (2013) Defining, comparing, and improving iTRAQ quantification in mass spectrometry proteomics data. Mol Cell Proteomics 12:2021–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang HC et al (2012) Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 21:3289–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li T et al (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22:845–854

    Article  CAS  PubMed  Google Scholar 

  145. Katsuda T et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Bruno S et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xin H et al (2013) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31:2737–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. E.L. Andaloussi S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  CAS  Google Scholar 

  149. Zhu YG et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Aliotta JM et al (2007) Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 25:2245–2256

    Article  PubMed  PubMed Central  Google Scholar 

  151. Monsel A et al (2015) Therapeutic efects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 192:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Boregowda SV et al (2012) Atmospheric oxygen inhibits growth and differentiation of marrow-derived mouse mesenchymal stem cells via a p53-dependent mechanism: implications for long-term culture expansion. Stem Cells 30:975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang Z et al (2012) MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett 586:20–26

    Article  CAS  PubMed  Google Scholar 

  154. Bandres E et al (2009) microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 15:2281–2290

    Article  CAS  PubMed  Google Scholar 

  155. Oka T et al (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ishikawa K et al (2010) The innate immune system in host mice targets cells with allogenic mitochondrial DNA. J Exp Med 207:2297–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia C. dos Santos MSc, MD, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

dos Santos, C.C. (2017). Stem Cells and Their Immunomodulatory Potential for the Treatment of ARDS. In: Chiumello, D. (eds) Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-41852-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41852-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41850-6

  • Online ISBN: 978-3-319-41852-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics