Ventilator-Induced Lung Injury

Chapter

Abstract

An acute lung injury represents a continuum of injury that may arise from a number of primary insults. When it is present, it may progress due to the trauma from mechanical ventilation, a finding that has led to an intense debate over the optimal ventilator management. Moreover, it has been demonstrated that mechanical ventilation per se, even in the absence of a preexisting lung injury, may lead to the development of ventilator-induced lung injury (VILI). The association between positive pressure mechanical ventilation and lung injury has fostered the concepts of barotrauma, volutrauma, atelectrauma, and biotrauma and led to the clinical development of “lung-protective ventilation,” which has led to a significant improvement in outcomes. Several theories have attempted to explain the mechanistic basis of VILI. The stretched-pore hypothesis suggested that vascular distention may open the endothelial intercellular junctions, thus increasing fluid and protein leak and leading to a compromised lung function. The stress failure hypothesis proposes that pressure-induced tensile failure of capillary endothelium and basement membrane may result in hemorrhage and fluid leak. The stretch-recoil hypothesis introduced the concept that active cellular components are involved in the development of VILI. In the current chapter, ventilator-induced lung injury is examined as it relates to the pathophysiological changes beyond direct airway trauma. The role of lung-related factors such as stress, strain, and lung inhomogeneity will be examined, as well as extra-parenchymal factors and factors more directly related to mechanical ventilation (such as tidal volume, driving pressure, respiratory rate, inspiratory-to-expiratory ratio and flow). The recently proposed, unifying theory of mechanical power will also be presented and discussed.

Keywords

Mechanical Ventilation Lung Injury Tidal Volume Functional Residual Capacity Mechanical Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fan E, Needham DM, Stewart TE (2005) Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA 294(22):2889–2896. doi: 10.1001/jama.294.22.2889 CrossRefPubMedGoogle Scholar
  2. 2.
    Gattinoni L, Quintel M (2016) Is mechanical ventilation a cure for ARDS? Intensive Care Med 42(5):916–917. doi: 10.1007/s00134-016-4266-y CrossRefPubMedGoogle Scholar
  3. 3.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137(5):1159–1164. doi: 10.1164/ajrccm/137.5.1159 CrossRefPubMedGoogle Scholar
  4. 4.
    Nash G, Blennerhassett JB, Pontoppidan H (1967) Pulmonary lesions associated with oxygen therapy and artificial ventilation. N Engl J Med 276(7):368–374. doi: 10.1056/NEJM196702162760702 CrossRefPubMedGoogle Scholar
  5. 5.
    Avignon PD, Lindahl J, Werneman H (1956) Causes of death. Acta Medica Scand Suppl 316:111–113Google Scholar
  6. 6.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110(5):556–565. doi: 10.1164/arrd.1974.110.5.556 PubMedGoogle Scholar
  7. 7.
    Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Chen V, Buckhold D (1988) Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med 15(1):8–14CrossRefPubMedGoogle Scholar
  8. 8.
    Fan E, Villar J, Slutsky AS (2013) Novel approaches to minimize ventilator-induced lung injury. BMC Med 11:85. doi: 10.1186/1741-7015-11-85 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Uhlig U, Uhlig S (2011) Ventilation-induced lung injury. Compr Physiol 1(2):635–661. doi: 10.1002/cphy.c100004 PubMedGoogle Scholar
  10. 10.
    Zapol WM, Snider MT, Hill JD, Fallat RJ, Bartlett RH, Edmunds LH, Morris AH, Peirce EC 2nd, Thomas AN, Proctor HJ, Drinker PA, Pratt PC, Bagniewski A, Miller RG Jr (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 242(20):2193–2196CrossRefPubMedGoogle Scholar
  11. 11.
    Bernard GR (2005) Acute respiratory distress syndrome: a historical perspective. Am J Respir Crit Care Med 172(7):798–806. doi: 10.1164/rccm.200504-663OE CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Erickson SE, Martin GS, Davis JL, Matthay MA, Eisner MD (2009) Recent trends in acute lung injury mortality: 1996-2005. Crit Care Med 37(5):1574–1579. doi: 10.1097/CCM.0b013e31819fefdf CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99(5):944–952. doi: 10.1172/JCI119259 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282(1):54–61CrossRefPubMedGoogle Scholar
  15. 15.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network (2000). N Engl J Med 342(18):1301–1308. doi: 10.1056/NEJM200005043421801
  16. 16.
    Marini JJ, Jaber S (2016) Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med 42(10):1597–1600. doi: 10.1007/s00134-016-4534-x CrossRefPubMedGoogle Scholar
  17. 17.
    Protti A, Maraffi T, Milesi M, Votta E, Santini A, Pugni P, Andreis DT, Nicosia F, Zannin E, Gatti S, Vaira V, Ferrero S, Gattinoni L (2016) Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med 44(9):e838–e845. doi: 10.1097/CCM.0000000000001718 CrossRefPubMedGoogle Scholar
  18. 18.
    Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, Cammaroto A, Brioni M, Montaruli C, Nikolla K, Guanziroli M, Dondossola D, Gatti S, Valerio V, Vergani GL, Pugni P, Cadringher P, Gagliano N, Gattinoni L (2016) Mechanical power and development of ventilator-induced lung injury. Anesthesiology 124(5):1100–1108. doi: 10.1097/ALN.0000000000001056 CrossRefPubMedGoogle Scholar
  19. 19.
    Tremblay LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32(1):24–33. doi: 10.1007/s00134-005-2817-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178(4):346–355. doi: 10.1164/rccm.200710-1589OC CrossRefPubMedGoogle Scholar
  21. 21.
    Tremblay LN, Slutsky AS (2005) Pathogenesis of ventilator-induced lung injury: trials and tribulations. Am J Physiol Lung Cell Mol Physiol 288(4):L596–L598. doi: 10.1152/ajplung.00438.2004 CrossRefPubMedGoogle Scholar
  22. 22.
    Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L (2011) Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med 183(10):1354–1362. doi: 10.1164/rccm.201010-1757OC CrossRefPubMedGoogle Scholar
  23. 23.
    Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41(4):1046–1055. doi: 10.1097/CCM.0b013e31827417a6 CrossRefPubMedGoogle Scholar
  24. 24.
    Protti A, Andreis DT, Milesi M, Iapichino GE, Monti M, Comini B, Pugni P, Melis V, Santini A, Dondossola D, Gatti S, Lombardi L, Votta E, Carlesso E, Gattinoni L (2015) Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp 3(1):34. doi: 10.1186/s40635-015-0070-1 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hewlett AM, Hulands GH, Nunn JF, Minty KB (1974) Functional residual capacity during anaesthesia. I: methodology. Br J Anaesth 46(7):479–485CrossRefPubMedGoogle Scholar
  26. 26.
    Olegard C, Sondergaard S, Houltz E, Lundin S, Stenqvist O (2005) Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg 101(1):206–212, table of contents. doi: 10.1213/01.ANE.0000165823.90368.55
  27. 27.
    Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110(6):482–488PubMedGoogle Scholar
  28. 28.
    Nieman GF, Satalin J, Andrews P, Habashi NM, Gatto LA (2016) Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI). Intensive Care Med Exp 4(1):16. doi: 10.1186/s40635-016-0090-5 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cressoni M, Cadringher P, Chiurazzi C, Amini M, Gallazzi E, Marino A, Brioni M, Carlesso E, Chiumello D, Quintel M, Bugedo G, Gattinoni L (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189(2):149–158. doi: 10.1164/rccm.201308-1567OC PubMedGoogle Scholar
  30. 30.
    Cressoni M, Gallazzi E, Chiurazzi C, Marino A, Brioni M, Menga F, Cigada I, Amini M, Lemos A, Lazzerini M, Carlesso E, Cadringher P, Chiumello D, Gattinoni L (2013) Limits of normality of quantitative thoracic CT analysis. Crit Care 17(3):R93. doi: 10.1186/cc12738 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bilek AM, Dee KC, Gaver DP (1985) 3rd (2003) mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol 94(2):770–783. doi: 10.1152/japplphysiol.00764.2002 CrossRefGoogle Scholar
  32. 32.
    Albert RK, Keniston A, Baboi L, Ayzac L, Guerin C (2014) Prone position-induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome. Am J Respir Crit Care Med 189(4):494–496. doi: 10.1164/rccm.201311-2056LE CrossRefPubMedGoogle Scholar
  33. 33.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18(6):319–321CrossRefPubMedGoogle Scholar
  34. 34.
    Nieman GF, Gatto LA (1985) Habashi NM (2015) impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. J Appl Physiol 119(11):1245–1261. doi: 10.1152/japplphysiol.00659.2015 Google Scholar
  35. 35.
    Kumar A, Pontoppidan H, Falke KJ, Wilson RS, Laver MB (1973) Pulmonary barotrauma during mechanical ventilation. Crit Care Med 1(4):181–186CrossRefPubMedGoogle Scholar
  36. 36.
    Ioannidis G, Lazaridis G, Baka S, Mpoukovinas I, Karavasilis V, Lampaki S, Kioumis I, Pitsiou G, Papaiwannou A, Karavergou A, Katsikogiannis N, Sarika E, Tsakiridis K, Korantzis I, Zarogoulidis K, Zarogoulidis P (2015) Barotrauma and pneumothorax. J Thorac Dis 7(Suppl 1):S38–S43. doi: 10.3978/j.issn.2072-1439.2015.01.31 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tagliabue M, Casella TC, Zincone GE, Fumagalli R, Salvini E (1994) CT and chest radiography in the evaluation of adult respiratory distress syndrome. Acta Radiol 35(3):230–234CrossRefPubMedGoogle Scholar
  38. 38.
    Marini JJ, Culver BH (1989) Systemic gas embolism complicating mechanical ventilation in the adult respiratory distress syndrome. Ann Intern Med 110(9):699–703CrossRefPubMedGoogle Scholar
  39. 39.
    Dos Santos CC (1985) Slutsky AS (2000) invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89(4):1645–1655Google Scholar
  40. 40.
    Vlahakis NE, Hubmayr RD (2005) Cellular stress failure in ventilator-injured lungs. Am J Respir Crit Care Med 171(12):1328–1342. doi: 10.1164/rccm.200408-1036SO CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou YH, Omary MB, Sznajder JI, Goldman RD (2005) Keratin 8 phosphorylation by protein kinase C delta regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J Biol Chem 280(34):30400–30405. doi: 10.1074/jbc.M504239200 CrossRefPubMedGoogle Scholar
  42. 42.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149(5):1327–1334. doi: 10.1164/ajrccm.149.5.8173774 CrossRefPubMedGoogle Scholar
  43. 43.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28(5):596–608PubMedGoogle Scholar
  44. 44.
    Valenza F, Guglielmi M, Irace M, Porro GA, Sibilla S, Gattinoni L (2003) Positive end-expiratory pressure delays the progression of lung injury during ventilator strategies involving high airway pressure and lung overdistention. Crit Care Med 31(7):1993–1998. doi: 10.1097/01.CCM.0000070401.65534.F9 CrossRefPubMedGoogle Scholar
  45. 45.
    Steinberg JM, Schiller HJ, Halter JM, Gatto LA, Lee HM, Pavone LA, Nieman GF (2004) Alveolar instability causes early ventilator-induced lung injury independent of neutrophils. Am J Respir Crit Care Med 169(1):57–63. doi: 10.1164/rccm.200304-544OC CrossRefPubMedGoogle Scholar
  46. 46.
    Hotchkiss JR Jr, Blanch L, Murias G, Adams AB, Olson DA, Wangensteen OD, Leo PH, Marini JJ (2000) Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med 161(2 Pt 1):463–468. doi: 10.1164/ajrccm.161.2.9811008 CrossRefPubMedGoogle Scholar
  47. 47.
    Chiumello D, Carlesso E, Brioni M, Cressoni M (2016) Airway driving pressure and lung stress in ARDS patients. Crit Care 20:276. doi: 10.1186/s13054-016-1446-7 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chiumello D, Chidini G, Calderini E, Colombo A, Crimella F, Brioni M (2016) Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome. Ann Intensive Care 6(1):11. doi: 10.1186/s13613-016-0113-0 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Manzano F, Fernandez-Mondejar E, Colmenero M, Poyatos ME, Rivera R, Machado J, Catalan I, Artigas A (2008) Positive-end expiratory pressure reduces incidence of ventilator-associated pneumonia in nonhypoxemic patients. Crit Care Med 36(8):2225–2231. doi: 10.1097/CCM.0b013e31817b8a92 CrossRefPubMedGoogle Scholar
  50. 50.
    Fanelli V, Mascia L, Puntorieri V, Assenzio B, Elia V, Fornaro G, Martin EL, Bosco M, Delsedime L, Fiore T, Grasso S, Ranieri VM (2009) Pulmonary atelectasis during low stretch ventilation: "open lung" versus "lung rest" strategy. Crit Care Med 37(3):1046–1053. doi: 10.1097/CCM.0b013e3181968e7e CrossRefPubMedGoogle Scholar
  51. 51.
    Page B, Vieillard-Baron A, Beauchet A, Aegerter P, Prin S, Jardin F (2003) Low stretch ventilation strategy in acute respiratory distress syndrome: eight years of clinical experience in a single center. Crit Care Med 31(3):765–769. doi: 10.1097/01.CCM.0000055402.68581.DC CrossRefPubMedGoogle Scholar
  52. 52.
    Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157(6 Pt 1):1721–1725. doi: 10.1164/ajrccm.157.6.9709092 CrossRefPubMedGoogle Scholar
  53. 53.
    Tonetti T, Cressoni M, Collino F, Maiolo G, Rapetti F, Quintel M, Gattinoni L (2017) Volutrauma, Atelectrauma, and mechanical power. Crit Care Med 45(3):e327–e328. doi: 10.1097/CCM.0000000000002193 CrossRefPubMedGoogle Scholar
  54. 54.
    Parker JC, Breen EC (1985) West JB (1997) high vascular and airway pressures increase interstitial protein mRNA expression in isolated rat lungs. J Appl Physiol 83(5):1697–1705Google Scholar
  55. 55.
    Pelosi P, Rocco PR (2008) Effects of mechanical ventilation on the extracellular matrix. Intensive Care Med 34(4):631–639. doi: 10.1007/s00134-007-0964-9 CrossRefPubMedGoogle Scholar
  56. 56.
    Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care 7(6):435–444. doi: 10.1186/cc2392 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Budinger GR, Sznajder JI (2006) The alveolar-epithelial barrier: a target for potential therapy. Clin Chest Med 27(4):655–669; abstract ix. doi: 10.1016/j.ccm.2006.06.007
  58. 58.
    West JB (2013) Fragility of pulmonary capillaries. J Appl Physiol (1985) 115(1):1–15. doi: 10.1152/japplphysiol.00229.2013 CrossRefGoogle Scholar
  59. 59.
    O'Neill LA (2005) TLRs play good cop, bad cop in the lung. Nat Med 11(11):1161–1162. doi: 10.1038/nm1105-1161 CrossRefPubMedGoogle Scholar
  60. 60.
    Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, Protti A, Gotti M, Chiurazzi C, Carlesso E, Chiumello D, Quintel M (2016) Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 42(10):1567–1575. doi: 10.1007/s00134-016-4505-2 CrossRefPubMedGoogle Scholar
  61. 61.
    Marini JJ, Crooke PS 3rd (1993) A general mathematical model for respiratory dynamics relevant to the clinical setting. Am Rev Respir Dis 147(1):14–24. doi: 10.1164/ajrccm/147.1.14 CrossRefPubMedGoogle Scholar
  62. 62.
    Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363(12):1107–1116. doi: 10.1056/NEJMoa1005372 CrossRefPubMedGoogle Scholar
  63. 63.
    Guerin C, Papazian L, Reignier J, Ayzac L, Loundou A, Forel JM (2016) Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care 20(1):384. doi: 10.1186/s13054-016-1556-2 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cortes GA, Marini JJ (2013) Two steps forward in bedside monitoring of lung mechanics: transpulmonary pressure and lung volume. Crit Care 17(2):219. doi: 10.1186/cc12528 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, Lundin S, Stenqvist O, Gattinoni L (2014) The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med 40(11):1670–1678. doi: 10.1007/s00134-014-3415-4 CrossRefPubMedGoogle Scholar
  66. 66.
    Gattinoni L, Pesenti A (2005) The concept of "baby lung". Intensive Care Med 31(6):776–784. doi: 10.1007/s00134-005-2627-z CrossRefPubMedGoogle Scholar
  67. 67.
    Marini JJ (2015) Advances in the support of respiratory failure: putting all the evidence together. Crit Care 19(Suppl 3):S4. doi: 10.1186/cc14722 PubMedPubMedCentralGoogle Scholar
  68. 68.
    Suzuki S, Hotchkiss JR, Takahashi T, Olson D, Adams AB, Marini JJ (2004) Effect of core body temperature on ventilator-induced lung injury. Crit Care Med 32(1):144–149. doi: 10.1097/01.CCM.0000098857.14923.44 CrossRefPubMedGoogle Scholar
  69. 69.
    Akinci OI, Celik M, Mutlu GM, Martino JM, Tugrul S, Ozcan PE, Yilmazbayhan D, Yeldandi AV, Turkoz KH, Kiran B, Telci L, Cakar N (2005) Effects of body temperature on ventilator-induced lung injury. J Crit Care 20(1):66–73CrossRefPubMedGoogle Scholar
  70. 70.
    Hotchkiss JR Jr, Blanch L, Naveira A, Adams AB, Carter C, Olson DA, Leo PH, Marini JJ (2001) Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Crit Care Med 29(8):1593–1598CrossRefPubMedGoogle Scholar
  71. 71.
    Curley G, Kavanagh BP, Laffey JG (2010) Hypocapnia and the injured brain: more harm than benefit. Crit Care Med 38(5):1348–1359. doi: 10.1097/CCM.0b013e3181d8cf2b CrossRefPubMedGoogle Scholar
  72. 72.
    Peltekova V, Engelberts D, Otulakowski G, Uematsu S, Post M, Kavanagh BP (2010) Hypercapnic acidosis in ventilator-induced lung injury. Intensive Care Med 36(5):869–878. doi: 10.1007/s00134-010-1787-7 CrossRefPubMedGoogle Scholar
  73. 73.
    Sinclair SE, Altemeier WA, Matute-Bello G, Chi EY (2004) Augmented lung injury due to interaction between hyperoxia and mechanical ventilation. Crit Care Med 32(12):2496–2501CrossRefPubMedGoogle Scholar
  74. 74.
    Li LF, Liao SK, Ko YS, Lee CH, Quinn DA (2007) Hyperoxia increases ventilator-induced lung injury via mitogen-activated protein kinases: a prospective, controlled animal experiment. Crit Care 11(1):R25. doi: 10.1186/cc5704 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Brigham KL, Woolverton WC, Blake LH, Staub NC (1974) Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J Clin Invest 54(4):792–804. doi: 10.1172/JCI107819 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157(1):294–323. doi: 10.1164/ajrccm.157.1.9604014 CrossRefPubMedGoogle Scholar
  77. 77.
    Broccard AF, Hotchkiss JR, Kuwayama N, Olson DA, Jamal S, Wangensteen DO, Marini JJ (1998) Consequences of vascular flow on lung injury induced by mechanical ventilation. Am J Respir Crit Care Med 157(6 Pt 1):1935–1942. doi: 10.1164/ajrccm.157.6.9612006 CrossRefPubMedGoogle Scholar
  78. 78.
    Broccard AF, Hotchkiss JR, Suzuki S, Olson D, Marini JJ (1999) Effects of mean airway pressure and tidal excursion on lung injury induced by mechanical ventilation in an isolated perfused rabbit lung model. Crit Care Med 27(8):1533–1541CrossRefPubMedGoogle Scholar
  79. 79.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16(6):372–377CrossRefPubMedGoogle Scholar
  80. 80.
    Sinclair SE, Kregenow DA, Lamm WJ, Starr IR, Chi EY, Hlastala MP (2002) Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 166(3):403–408. doi: 10.1164/rccm.200112-117OC CrossRefPubMedGoogle Scholar
  81. 81.
    Broccard AF, Hotchkiss JR, Vannay C, Markert M, Sauty A, Feihl F, Schaller MD (2001) Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med 164(5):802–806. doi: 10.1164/ajrccm.164.5.2007060 CrossRefPubMedGoogle Scholar
  82. 82.
    Asfar P, Singer M, Radermacher P (2015) Understanding the benefits and harms of oxygen therapy: response to comments by Akca. Intensive Care Med 41(10):1875. doi: 10.1007/s00134-015-3995-7 CrossRefPubMedGoogle Scholar
  83. 83.
    Sjoberg F, Singer M (2013) The medical use of oxygen: a time for critical reappraisal. J Intern Med 274(6):505–528. doi: 10.1111/joim.12139 CrossRefPubMedGoogle Scholar
  84. 84.
    Girardis M, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, Morelli A, Antonelli M, Singer M (2016) Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA 316(15):1583–1589. doi: 10.1001/jama.2016.11993 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Unità Operativa di Anestesia e RianimazioneOspedale San Paolo-Polo Universitario, ASST Santi Paolo e CarloMilanItaly

Personalised recommendations