Skip to main content

Plant Growth-Promoting Bacteria: A Good Source for Phytoremediation of Metal-Contaminated Soil

  • Chapter
  • First Online:

Abstract

Phytoremediation is a sustainable technique for the removal of contaminants from the polluted environments, but the removal of contaminants by plants and microorganisms together is more effective than phytoremediation alone. Phytoremediation is enhanced with the involvement of microorganisms in soil as well as in water. Rhizosphere microorganisms develop beneficial interactions with plants which ultimately results in increased plant growth and improved phytoremediation of heavy metals. Microorganisms play a vital role in mobilization and immobilization of metal contaminants from the environment for availability to different plants. Different microorganisms produce different metabolites which interact and make complexes with the contaminants and decrease their levels of toxicity by transforming them to less toxic state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107(11):1253–1265

    Article  CAS  PubMed  Google Scholar 

  2. Doble M, Kumar A (2005) Biotreatment of industrial effluents. Butterworth-Heinemann, Burlington

    Google Scholar 

  3. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160

    Article  CAS  PubMed  Google Scholar 

  4. Oh K, Li T, Cheng HY, Hu XF, Lin Q, Xie YH (eds) (2013) A primary study on assessment of phytoremediation potential of biofuel crops in heavy metal contaminated soil. Appl Mech Mater 295–298:1135–1138

    Google Scholar 

  5. Wang X, Li F, Okazaki M, Sugisaki M (2003) Phytoremediation of contaminated soil. Ann Rep CESS 3:114–123

    Google Scholar 

  6. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C et al (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci 104(43):16816–16821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong ZY, Huang WH, Xing DF, Zhang HF (2013) Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation. J Hazard Mater 260:399–408

    Article  CAS  PubMed  Google Scholar 

  9. Aparicio J, Solá MZS, Benimeli CS, Amoroso MJ, Polti MA (2015) Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr (VI) and lindane. Ecotoxicol Environ Saf 116:34–39

    Article  CAS  PubMed  Google Scholar 

  10. Coatu V, Ţigănuş D, Oros A, Lazăr L (2013) Analysis of hazardous substance contamination of the marine ecosystem in the romanian Black Sea coast, part of the Marine Strategy Framework Directive (2008/56/EEC) implementation. Cercetări Mar 43:174–186

    Google Scholar 

  11. Owabor C, Onwuemene O, Enaburekhan I (2013) Bioremediation of polycyclic aromatic hydrocarbon contaminated aqueous-soil matrix: effect of co-contamination. J Appl Sci Environ Manage 15(4):583–588

    Google Scholar 

  12. Hao X, Xie P, Johnstone L, Miller SJ, Rensing C, Wei G (2012) Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Appl Environ Microbiol 78(15):5384–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  14. Babu AG, Shea PJ, Sudhakar D, Jung I-B, Oh B-T (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manage 151:160–166

    Article  CAS  PubMed  Google Scholar 

  15. Segura A, Ramos JL (2013) Plant–bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24(3):467–473

    Article  CAS  PubMed  Google Scholar 

  16. Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374(1–2):689–700

    Article  CAS  Google Scholar 

  17. Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X et al (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93(4):1745–1753

    Article  CAS  PubMed  Google Scholar 

  18. Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  19. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  20. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14(3):185–192

    Article  PubMed  Google Scholar 

  21. Glick BR (2004) Bacterial ACC, deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    Article  CAS  PubMed  Google Scholar 

  22. Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azotobacter) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  23. Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15(2):353–378

    Article  CAS  PubMed  Google Scholar 

  24. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854

    Article  CAS  PubMed  Google Scholar 

  25. Willinger MG, Polleux J, Antonietti M, Cölfen H, Pinna N, Nassif N (2015) Structural evolution of aragonite superstructures obtained in the presence of the siderophore deferoxamine. CrystEngComm 17(21):3927–3935

    Article  CAS  Google Scholar 

  26. Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286

    Article  PubMed  Google Scholar 

  27. Dimkpa C, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    Article  CAS  PubMed  Google Scholar 

  28. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  29. Harrington JM, Duckworth OW, Haselwandter K (2015) The fate of siderophores: antagonistic environmental interactions in exudate-mediated micronutrient uptake. Biometals 28(3):461–472

    Article  CAS  PubMed  Google Scholar 

  30. Luján AM, Gómez P, Buckling A (2015) Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol Lett 11(2):20140934

    Article  PubMed  PubMed Central  Google Scholar 

  31. Machuca A, Pereira G, Aguiar A, Milagres A (2007) Metal‐chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44(1):7–12

    Article  CAS  PubMed  Google Scholar 

  32. Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358

    Article  CAS  Google Scholar 

  33. Braud A, Geoffroy V, Hoegy F, Mislin G, Schalk I (2010) The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistance against metals: another biological function of these two siderophores. Environ Microbiol Rep 2:419–425

    Article  CAS  PubMed  Google Scholar 

  34. Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56(1):55–60

    Article  CAS  PubMed  Google Scholar 

  35. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel‐spiked soil using PGPR. J Basic Microbiol 49(2):195–204

    Article  CAS  PubMed  Google Scholar 

  36. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304(1–2):35–44

    Article  CAS  Google Scholar 

  37. Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M et al (2010) Culturable bacteria from Zn‐and Cd‐accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108(4):1471–1484

    Article  CAS  PubMed  Google Scholar 

  38. Firestone M (2015) Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover. Regents of the University of Callifornia

    Google Scholar 

  39. Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EA, Faisal M (2015) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)-applications in phytoremediation and biofortification. Int J Phytoremediation 17(4):341–347

    Article  CAS  PubMed  Google Scholar 

  40. Jones D, Edwards A (1998) Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem 30(14):1895–1902

    Article  CAS  Google Scholar 

  41. Croes S, Weyens N, Colpaert J, Vangronsveld J (2015) Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: an evaluation of sampling and isolation protocols. Environ Microbiol 17(7):2379–2392

    Article  CAS  PubMed  Google Scholar 

  42. Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52(1):527–560

    Article  CAS  Google Scholar 

  43. Li W, Ye Z, Wong M (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326(1–2):453–467

    Article  CAS  Google Scholar 

  44. Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35(1):133–141

    Article  CAS  Google Scholar 

  45. Fomina M, Alexander I, Colpaert J, Gadd G (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37(5):851–866

    Article  CAS  Google Scholar 

  46. Janyasuthiwong S, Phiri SM, Kijjanapanich P, Rene ER, Esposito G, Lens PN (2015) Copper, lead and zinc removal from metal contaminated wastewater by adsorption onto agricultural wastes. Environ Technol 36(24):3071–3083

    Article  CAS  PubMed  Google Scholar 

  47. Jones D, Dennis P, Owen A, Van Hees P (2003) Organic acid behavior in soils—misconceptions and knowledge gaps. Plant Soil 248(1–2):31–41

    Article  CAS  Google Scholar 

  48. Oliveira V, Gomes NC, Almeida A, Silva AM, Silva H, Cunha  (2015) Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microbiol Ecol 69(1):1–12

    Article  CAS  Google Scholar 

  49. Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62(1):85–91

    Article  CAS  Google Scholar 

  50. Liu W, Hou J, Wang Q, Yang H, Luo Y, Christie P (2015) Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant Soil 389(1-2):109–119

    Article  CAS  Google Scholar 

  51. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159(10):2675–2683

    Article  CAS  PubMed  Google Scholar 

  52. Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43(15):5884–5889

    Article  CAS  PubMed  Google Scholar 

  53. Shi J-Y, Lin H-R, Yuan X-F, Chen X-C, Shen C-F, Chen Y-X (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16(2):1409–1417

    Article  CAS  PubMed  Google Scholar 

  54. Chen S-Y, Lin J-G (2001) Effect of substrate concentration on bioleaching of metal-contaminated sediment. J Hazard Mater 82(1):77–89

    Article  CAS  PubMed  Google Scholar 

  55. Abou-Shanab R, Angle J, Van Berkum P (2007) Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.). Int J Phytoremediation 9(2):91–105

    Article  CAS  PubMed  Google Scholar 

  56. Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr (VI) and lindane in soil by actinobacteria. Int Biodeterior Biodegrad 88:48–55

    Article  CAS  Google Scholar 

  57. Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228

    Article  CAS  PubMed  Google Scholar 

  58. Vivas A, Biro B, Ruiz-Lozano J, Barea J, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62(9):1523–1533

    Article  CAS  PubMed  Google Scholar 

  59. Krupa P, Kozdrój J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182(1–4):83–90

    Article  CAS  Google Scholar 

  60. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    Article  CAS  PubMed  Google Scholar 

  61. Abou‐Shanab R, Angle J, Delorme T, Chaney R, Van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224

    Article  Google Scholar 

  62. Abou-Shanab R, Angle J, Chaney R (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38(9):2882–2889

    Article  CAS  Google Scholar 

  63. Cabello-Conejo M, Becerra-Castro C, Monterroso C, Prieto-Fernández A, Mench M, Kidd P (eds) (2011) Effects of rhizobacterial inoculation on biomass and nickel concentration in Alyssum pintodasilvae. In: Proceedings of the 11th international conference on the biogeochemistry of trace elements (ICOBTE), Florence, Italy

    Google Scholar 

  64. Ghosh P, Rathinasabapathi B, Ma LQ (2011) Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 102(19):8756–8761

    Article  CAS  PubMed  Google Scholar 

  65. Li W, Ye Z, Wong M (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant,Sedum alfredii. J Exp Bot 58(15–16):4173–4182

    Article  CAS  PubMed  Google Scholar 

  66. Whiting SN, Leake JR, McGrath SP, Baker AJ (2001) Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction. Plant Soil 237(1):147–156

    Article  CAS  Google Scholar 

  67. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997

    Article  CAS  PubMed  Google Scholar 

  68. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T et al (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16(4):321–333

    Article  CAS  PubMed  Google Scholar 

  69. Guo J, Tang S, Ju X, Ding Y, Liao S, Song N (2011) Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J Microbiol Biotechnol 27(12):2835–2844

    Article  CAS  Google Scholar 

  70. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84

    Article  Google Scholar 

  71. Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798

    Article  CAS  PubMed  Google Scholar 

  72. Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  CAS  PubMed  Google Scholar 

  73. Ha NTH, Sakakibara M, Sano S (2011) Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresour Technol 102(3):2228–2234

    Article  PubMed  Google Scholar 

  74. Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C et al (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11(3):251–267

    Article  CAS  Google Scholar 

  75. Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faisal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Munir, I., Faisal, M. (2016). Plant Growth-Promoting Bacteria: A Good Source for Phytoremediation of Metal-Contaminated Soil. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-41811-7_7

Download citation

Publish with us

Policies and ethics