Skip to main content

Removal of Pathogenic Bacteria in Constructed Wetlands: Mechanisms and Efficiency

  • Chapter
  • First Online:
Phytoremediation

Abstract

Sanitation efficiency is an important parameter in wastewater treatment. Removal of pathogenic microorganisms is crucial to prevent water resources contamination and to limit any risks for human health. Constructed Wetlands are today a well-established technology for wastewater treatment. Although very effective in the removal of organic matter and nutrients, pathogen removal is seldom the main target in these systems. Current experience shows that Constructed Wetlands can be very effective in the removal of pathogens from wastewater with removal rates up to 99 %. This review chapter provides information about sanitation practices using different technologies, focusing on the sanitation efficiency of Constructed Wetlands, the removal processes and the design and operational parameters that affect the removal of pathogens in Constructed Wetland systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2006) Guidelines for the safe use of wastewater, excreta and greywater. Wastewater use in agriculture, vol 2. http://www.who.int/water_sanitation _health/wastewater/gsuww/en/index.html. Accessed 12 Dec 2015

  2. Asano T, Burtin FL, Leverenz HL, Tsuchihashi R, Tchobanoglous G (2007) Water reuse: issues, technologies, and applications. MacGraw-Hill, New York

    Google Scholar 

  3. Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  CAS  PubMed  Google Scholar 

  4. Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228–1243

    Article  PubMed  Google Scholar 

  5. Bartram J, Cairncross S (2010) Hygiene, sanitation, and water: forgotten foundations of health. PLoS Med 7:e1000367

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shakoor S, Zaidi AK, Hasan R (2012) Tropical bacterial gastrointestinal infections. Infect Dis Clin North Am 26:437–453

    Article  PubMed  Google Scholar 

  7. Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 41:17–24

    Article  PubMed  Google Scholar 

  8. Prüss-Üstün A, Bos R, Gore F, Bartram J (2008) Safer water, better health: costs, benefits and sustainability of interventions to protect and promote health. World Health Organization, Geneva

    Google Scholar 

  9. Sharma S, Sachdeva P, Virdi JS (2003) Emerging water-borne pathogens. Appl Microbiol Biotechnol 61:424–428

    Article  CAS  PubMed  Google Scholar 

  10. Ashbolt NJ, Grabow WOK, Snozzi M (2001) Indicators of microbial water quality. In: Fewtrell L, Bartram J (eds) Water quality: guidelines, standards and health. IWA Publishing, World Health Organization, London

    Google Scholar 

  11. Dufour A, Snozzi M, Koster W, Bartram J, Ronchi E, Fewtrell L (2003) Assessing microbial safety of drinking water: improving approaches and methods.WHO drinking water quality series, OECD—WHO, Paris, France. IWA Publishing, London

    Google Scholar 

  12. Gersberg RM, Brenner R, Lyon SR, Elkins BV (1987) Survival of bacteria and viruses in municipal wastewaters applied to artificial wetlands. In: Reddy KR, Smith WH (eds) Aquatic plants for waste treatment and resource recovery. Magnolia Publishing, Orlando

    Google Scholar 

  13. Rusin P, Enriquez CE, Jonson D, Yerba CP (2010) Environmentally transmitted pathogens. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic, San Diego, pp 447–489

    Google Scholar 

  14. Levantesi C, Bonadonna L, Briancesco R, Grohmann E, Toze S, Tandoi V (2012) Salmonella in surface and drinking water: occurrence and water-mediated transmission. Food Res Int 45:587–602

    Article  Google Scholar 

  15. Hai L, Hongado C (1982) Significance of fecal coliform and fecal streptococcus in water pollution monitoring. Acta Acad Med Wuhan 251:251–253

    Article  Google Scholar 

  16. Clausen EM, Green BL, Litsky W (1977) Fecal Streptococci: indicators of pollution. In: Hoadley AW, Butka BJ (eds) Bacterial indicators/health hazards associated with water. American Society for Testing and Materials, Philadelphia, pp 247–264

    Chapter  Google Scholar 

  17. Payment P, Godfree A, Sartory D (2002) Clostridium. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley-Interscience, New York, pp 861–871

    Google Scholar 

  18. Morgan JA, Hoet AE, Wittum TE, Monahan CM, Martin JF (2008) Reduction of pathogen indicator organisms in dairy wastewater using an ecological treatment system. J Environ Qual 37:272–279

    Article  CAS  PubMed  Google Scholar 

  19. Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  CAS  PubMed  Google Scholar 

  20. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  21. Okoh AI, Odjadjare EE, Igbinosa EO, Osode AN (2007) Wastewater treatment plants as a source of microbial pathogens in receiving watersheds. Afr J Biotechnol 6(25):2932–2944

    Article  CAS  Google Scholar 

  22. Sutton S (2010) The most probable number method and its uses in enumeration, qualification, and validation. J Valid Technol 16(3):35–38

    Google Scholar 

  23. American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  24. Zhang K, Farahbakhsh K (2007) Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse. Water Res 41:2816–2824

    Article  CAS  PubMed  Google Scholar 

  25. Stefanakis AI, Akratos CS, Tsihrintzis VA (2014) Vertical flow constructed wetlands: eco-engineering systems for wastewater and sludge treatment, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  26. Stefanakis AI (2015) Modern water reuse technologies II. In: Eslamian S (ed) Urban water reuse handbook. CRC Press, Taylor & Francis Group, Boca Raton, pp 371–382

    Chapter  Google Scholar 

  27. Koukouraki E, Diamadopoulos E (2002) THM formation during chlorination of treated municipal wastewater. Water Sci Technol Water Supply 2(3):235–242

    CAS  Google Scholar 

  28. Blatchley ER III, Hunt BA, Duggirala R, Thompson JE, Zhao J, Halaby T, Cowger RL, Straub CM, Alleman JE (1997) Effects of disinfectants on wastewater effluent toxicity. Water Res 31(7):1581–1588

    Article  CAS  Google Scholar 

  29. World Health Organization and UNICEF (2010) Progress on sanitation and drinking-water: 2010 update. WHO Press, Geneva

    Google Scholar 

  30. World Health Organization and UNICEF (2013) Progress on sanitation and drinking-water: 2013 update. WHO/UNICEF, New York

    Google Scholar 

  31. Dufour A, Snozzi M, Koster W, Bartram J, Ronchi E, Fewtrell L (2003) Assessing microbial safety of drinking water: improving approaches and methods. WHO drinking water quality series, OECD-WHO, Paris, France. IWA Publishing, London

    Google Scholar 

  32. Decamp O, Warren A (2000) Investigation of Escherichia coli removal in various designs of subsurface flow wetlands used for wastewater treatment. Ecol Eng 14:293–299

    Article  Google Scholar 

  33. Stevik TK, Aa K, Ausland G, Hanssen JF (2004) Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res 38:1355–1367

    Article  CAS  PubMed  Google Scholar 

  34. Wand H, Vacca G, Kuschk P, Krüger M, Kästner M (2007) Removal of bacteria by filtration in planted and non-planted sand columns. Water Res 41:159–167

    Article  CAS  PubMed  Google Scholar 

  35. Karathanasis AD, Potter CL, Coyne MS (2003) Vegetation effects on faecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol Eng 20(2):157–169

    Article  Google Scholar 

  36. Karim MR, Manshadi FD, Karpiscak MM, Gerba CP (2004) The persistence and removal of enteric pathogens in constructed wetlands. Water Res 38(7):1831–1837

    Article  CAS  PubMed  Google Scholar 

  37. Vacca G, Wand H, Nikolausz M, Kuschk P, Kästner M (2005) Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands. Water Res 39(7):1361–1373

    Article  CAS  PubMed  Google Scholar 

  38. Boutilier L, Jamieson R, Gordon R, Lake C, Hart W (2009) Adsorption, sedimentation and inactivation of E. coli within wastewater treatment wetlands. Water Res 43:4370–4380

    Article  CAS  PubMed  Google Scholar 

  39. Sengupta ME, Thamsborg SM, Andersen TJ, Olsen A, Dalsgaard A (2011) Sedimentation of helminth eggs in water. Water Res 45(15):4651–4660

    Article  CAS  PubMed  Google Scholar 

  40. Arias C, Cabello A, Brix H, Johansen N (2003) Removal of indicator bacteria from municipal wastewater in an experimental two-stage vertical flow constructed wetland system. Water Sci Technol 48(5):35–41

    CAS  PubMed  Google Scholar 

  41. Sleytr K, Tietz A, Langergraber G, Haberl R (2007) Investigation of bacterial removal during the filtration process in constructed wetlands. Sci Total Environ 380(1–3):173–180

    Article  CAS  PubMed  Google Scholar 

  42. Gerba CP, Thurston JA, Falabi JA, Watt PM, Karpiscak MM (1999) Optimization of artificial wetland design for the removal of indicator microorganisms and pathogenic protozoa. Water Sci Technol 40:363–368

    Article  CAS  Google Scholar 

  43. Unden G, Becker S, Bongaerts J, Holighaus G, Schirawski J, Six S (1995) O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch Microbiol 164:81–90

    CAS  PubMed  Google Scholar 

  44. Green MB, Griffin P, Seabridge JK, Dhobie D (1997) Removal of bacteria in subsurface flow wetlands. Water Sci Technol 35(5):109–116

    Article  CAS  Google Scholar 

  45. Curtis TP, Mara DD, Silva SA (1992) The effect of sunlight on fecal-coliforms in ponds—implications of research and design. Water Sci Technol 26(7–8):1729–1738

    CAS  Google Scholar 

  46. Davies-Colley RJ, Donnison AM, Speed DJ (1997) Sunlight wavelengths inactivating faecal indicator microorganisms in waste stabilisation ponds. Water Sci Technol 35(11–12):219–225

    Article  CAS  Google Scholar 

  47. Zdragas A, Zalidis GC, Takavakoglou V, Katsavouni S, Anastasiadis ET, Eskridge K, Panoras A (2002) The effect of environmental conditions on the ability of a constructed wetland to disinfect municipal wastewater. Environ Manage 29(4):510–515

    Article  CAS  PubMed  Google Scholar 

  48. Khatiwada NR, Polprasert C (1999) Kinetics of fecal coliform removal in constructed wetlands. Water Sci Technol 40(3):109–116

    Article  CAS  Google Scholar 

  49. Davies CM, Bavor HJ (2000) The fate of stormwater-associated bacteria in constructed wetland and water pollution control pond systems. J Appl Microbiol 89:349–360

    Article  CAS  PubMed  Google Scholar 

  50. Neori A, Reddy KR, Cizkova-Koncalova H, Agami M (2000) Bioactive chemicals and biological-biochemical activities and their functions in rhizospheres of wetland plants. Bot Rev 66:351–378

    Article  Google Scholar 

  51. Soto F, Garcia M, de Luis E, Becares E (1999) Role of Scirpuslacustris in bacterial and nutrient removal from wastewater. Water Sci Technol 40(3):241–247

    Article  Google Scholar 

  52. Kuschk P, Wiessner A, Seeger EM, Kästner M, Kappelmeyer U, Paredes D, Shtemenko NI (2012) The status of research in constructed wetlands. In: Vitale K (ed) Environmental and food safety and security for South-East Europe and Ukraine. NATO science for peace and security series C: environmental security. Springer Science + Business Media B.V., Dordrecht

    Google Scholar 

  53. Shapiro OH, Kushmaro A, Brenner A (2010) Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J 4:327–336

    Article  PubMed  Google Scholar 

  54. Decamp O, Warren A (1998) Bacterivory in ciliates isolated from constructed wetlands (reed beds) used for wastewater treatment. Water Res 32:1989–1996

    Article  CAS  Google Scholar 

  55. Decamp O, Warren A, Sanchez R (1999) The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators. Water Sci Technol 40(3):91–98

    Article  CAS  Google Scholar 

  56. Stott R, May E, Matsushita E, Warren A (2001) Protozoan predation as a mechanism for the removal of Cryptosporidium oocysts from wastewaters in constructed wetlands. Water Sci Technol 44:191–198

    CAS  PubMed  Google Scholar 

  57. Abdulla H, Khafagi I, El-Kareem MA, Dewedar A (2007) Bacteriophages in engineered wetland for domestic wastewater treatment. Res J Microbiol 2(12):889–99

    Article  Google Scholar 

  58. Sélas B, Lakel A, Andres Y, Le Cloirec P P (2002) Wastewater reuse in on-site wastewater treatment: bacteria and virus movement in unsaturated flow through sand filter. Water Sci Technol 47(1):59–64

    Google Scholar 

  59. Weedon CM (2010) A decade of compact vertical flow constructed wetlands. Water Sci Technol 62(12):2790–800

    Article  CAS  PubMed  Google Scholar 

  60. Karimi B, Ehrampoush MH, Jabary H (2014) Indicator pathogens, organic matter and LAS detergent removal from wastewater by constructed subsurface wetlands. J Environ Health Eng 12:52

    Article  Google Scholar 

  61. Keffala C, Ghrabi A (2005) Nitrogen and bacterial removal in constructed wetlands treating domestic waste water. Desalination 185(1):383–389

    Article  CAS  Google Scholar 

  62. Mustaffa A (2013) Constructed wetland for wastewater treatment and reuse: a case study of developing country. Int J Environ Sci Dev 4(1):20–24

    Article  Google Scholar 

  63. García-Pérez A, Harrison M, Grant B, Chivers C (2011) Microbial analysis and chemical composition of maize (Zea mays, L.) growing on a recirculating vertical flow constructed wetland treating sewage on-site. Biosyst Eng 114:351–356

    Article  Google Scholar 

  64. García JA, Paredes D, Cubillos JA (2013) Effect of plants and the combination of wetland treatment type systems on pathogen removal in tropical climate conditions. Ecol Eng 58:57–62

    Article  Google Scholar 

  65. Abou-Elela SI, Golinielli G, Abou-Taleb EM, Hellal MS (2013) Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol Eng 61:460–468

    Article  Google Scholar 

  66. Headley T, Nivala J, Kassa K, Olsson L, Wallace S, Brix H, van Afferden M, Müller R (2013) Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: effects of design and plants. Ecol Eng 61P:564–574

    Article  Google Scholar 

  67. Zurirta F, De Anda J, Belmont MA (2009) Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol Eng 35:861–869

    Article  Google Scholar 

  68. Redder A, Duerr M, Daeschlein G, Baeder-Bederski O, Koch C, Mueller R, Exner M, Borneff-Lipp M (2010) Constructed wetlands—are they safe in reducing protozoan parasites? Int J Hyg Environ Health 213(1):72–77

    Article  PubMed  Google Scholar 

  69. Tanner CC, Sukias JP, Headley TR, Yates CR, Stott R (2012) Constructed wetlands and denitrifying bioreactors for on-site and decentralized wastewater treatment: comparison of five alternative configurations. Ecol Eng 42:112–123

    Article  Google Scholar 

  70. Hagendorf U, Diehl K, Feuerpfeil I, Hummel A, Lopez-Pila J, Szewzyk R (2005) Microbiological investigations for sanitary assessment of wastewater treated in constructed wetlands. Water Res 3:4849–4858

    Google Scholar 

  71. Abidi S, Kallali H, Jedidi N, Bouzaiane O, Hassen A (2009) Comparative pilot study of the performances of two constructed wetland wastewater treatment hybrid systems. Desalination 246:370–377

    Article  CAS  Google Scholar 

  72. Torrens A, Molle P, Boutin C, Salgot M (2009) Removal of bacterial and viral indicators in vertical flow constructed wetlands and intermittent sand filters. Desalination 247:170–179

    Google Scholar 

  73. Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  PubMed  Google Scholar 

  74. Sehar S, Naeem SS, Perveen I, Ali N, Ahmed S (2015) A comparative study of macrophytes influence on wastewater treatment through subsurface flow hybrid constructed wetland. Ecol Eng 81:62–69

    Article  Google Scholar 

  75. Hench KR, Bissonnette GK, Sexstone AJ, Coleman JG, Garbutt K, Skousen JG (2003) Fate of physical, chemical, and microbial contaminants in domestic wastewater following treatment by small constructed wetlands. Water Res 37(4):921–927

    Article  CAS  PubMed  Google Scholar 

  76. Olsson L (2011) Effect of design and dosing regime on the treatment performance of vertical flow constructed wetlands. Master thesis, Linköpings University, Sweden

    Google Scholar 

  77. Tuncsiper B, Ayaz S, Akca L (2012) Coliform bacteria removal from septic wastewater in a pilot-scale combined constructed wetland system. Environ Eng Manage 11(10):1873–1879

    CAS  Google Scholar 

  78. Ayaz SC, Aktas Ö, Akca L, Findik N (2015) Effluent quality and reuse potential of domestic wastewater treated in a pilot-scale hybrid constructed wetland system. J Environ Manage 156:115–120

    Article  CAS  PubMed  Google Scholar 

  79. Gikas GD, Tsihrintzis VA (2012) A small-size vertical flow constructed wetland for on-site treatment of household wastewater. Ecol Eng 44:337–343

    Article  Google Scholar 

  80. Morato J, Codony F, Sánchez O, Pérez LM, García J, Mas J (2014) Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands. Sci Total Environ 481:81–89

    Article  CAS  PubMed  Google Scholar 

  81. Akratos CS, Tsihrintzis VA (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng 29:173–191

    Article  Google Scholar 

  82. Sklarz MY, Gross A, Yakirevich A, Soares MIM (2009) A recirculating vertical flow constructed wetland for the treatment of domestic wastewater. Desalination 246:617–624

    Article  CAS  Google Scholar 

  83. Azaizeh H, Linden KG, Barstow C, Kalbouneh S, Tellawi A, Albalawneh A, Gerchman Y (2013) Constructed wetlands combined with UV disinfection systems for removal of enteric pathogens and wastewater contaminants. Water Sci Technol 67(3):651–657

    Article  CAS  PubMed  Google Scholar 

  84. Toscano A, Marzo A, Milani M, Cirelli GL, Barbagallo S (2015) Comparison of removal efficiencies in Mediterranean pilot constructed wetlands vegetated with different plant species. Ecol Eng 75:155–160

    Article  Google Scholar 

  85. Kipasika HJ, Buza J, Lyimo B, Miller WA, Njau KN (2014) Efficiency of a constructed wetland in removing microbial contaminants from pre-treated municipal wastewater. Phys Chem Earth 72–75:68–72

    Article  Google Scholar 

  86. Rachmadi AT, Kitajima M, Pepper IL, Gerba CP (2016) Enteric and indicator virus removal by surface flow wetlands. Sci Total Environ 542:976–982

    Article  CAS  PubMed  Google Scholar 

  87. Barbera AC, Cirelli GL, Cavallaro V, Di Silvestro I, Pacifici P, Castiglione V, Toscano A, Milani M (2009) Growth and biomass production of different plant species in two different constructed wetland systems in Sicily. Desalination 246:129–136

    Article  CAS  Google Scholar 

  88. Hamaamin YA, Adhikari U, Nejadhashemi P, Harrigan T, Reinhold DM (2014) Modeling Escherichia coli removal in constructed wetlands under pulse loading. Water Res 50:441–454

    Article  CAS  PubMed  Google Scholar 

  89. Abou-Elela SI, Hellal MS (2012) Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyperus. Ecol Eng 47:209–213

    Article  Google Scholar 

  90. Gross A, Shmueli O, Ronen Z, Raveh E (2007) Recycled vertical flow constructed wetland (RVFCW)—a novel method of recycling greywater for irrigation in small communities and households. Chemosphere 66:916–923

    Article  CAS  PubMed  Google Scholar 

  91. Zurita F, Belmont MA, De Anda J, White JR (2011) Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries. Water Sci Technol 63(4):654–659

    Article  CAS  PubMed  Google Scholar 

  92. Vandaele S, Thoeye C, Van Eygen B, De Gueldre G (2000) Small wastewater treatment plants in Flanders (Belgium): standard approach and experiences with constructed reed beds. Water Sci Technol 41(1):57–63

    CAS  Google Scholar 

  93. Puigagut J, Villasenõr J, Salas JJ, Bécares E, García J (2007) Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: a comparative study. Ecol Eng 30:312–319

    Article  Google Scholar 

  94. O’Luanaigh N, Gill LW (2012) The attenuation capacity of constructed wetlands to treat domestic wastewater in Ireland. Paper presented at the international symposium on domestic wastewater treatment and disposal systems [on-line]: Trinity College, Dublin, Ireland, September 10–11. Environmental Protection Agency, Johnstown Castle Estate, Wexford

    Google Scholar 

  95. Greenway M (2005) The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecol Eng 25:501–509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanakis I. Alexandros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alexandros, S.I., Akratos, C.S. (2016). Removal of Pathogenic Bacteria in Constructed Wetlands: Mechanisms and Efficiency. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-41811-7_17

Download citation

Publish with us

Policies and ethics