Skip to main content

Phytoremediation Applications for Waste Water and Improved Water Quality

  • Chapter
  • First Online:
Phytoremediation

Summary

Macrophytes play an important role in natural and constructed wetlands (CWs). Their most important function is removal of excessive levels of some substances, such as nutrients, total suspended solids, trace elements, etc. CWs are widely used all around the world to treat many types of wastewater, with relatively high removal efficiency (5-day biochemical oxygen demand [BOD5]—around 80 %, total nutrients—approx. 40 % in the case of domestic sewage). Considering the purpose of CWs application, a few types were created with several variants in certain environmental conditions and for many effluent types with various loads of many substances. Two main types of flow through CWs are considered—surface and subsurface flow. The latter is further divided into horizontal and vertical flow. The most popular use of CWs is for domestic and municipal wastewater as secondary and tertiary treatment stages. Among macrophytes applied for phytoremediation, great diversity of plant species has been observed, especially native species and a wide range of ubiquitous species, such as Phragmites australis and Typha spp. Most macrophyte species also play an important role in natural ecosystems in improvement of surface water quality. Many species are utilized as indicators of water quality, even when low pollutant levels occur, while others are important for phytoextraction or phytostabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen H (2011) Surface-flow constructed treatment wetlands for pollutant removal: applications and perspectives. Wetlands 31:805–814

    Article  Google Scholar 

  2. Ghermandi A, Bixio D, Thoeye C (2007) The role of free water surface constructed wetlands as polishing step in municipal wastewater reclamation and reuse. Sci Total Environ 380:247–258

    Article  CAS  PubMed  Google Scholar 

  3. Rousseau DPL, Lesage E, Story A, Vanrolleghem PA, De Pauw N (2008) Constructed wetlands for water reclamation. Desalination 218:181–189

    Article  CAS  Google Scholar 

  4. Merlin G, Pajean JL, Lissolo T (2002) Performances of constructed wetlands for municipal wastewater treatment in rural mountainous area. Hydrobiologia 469:87–98

    Article  CAS  Google Scholar 

  5. Kantawanichkula S, Kladpraserta S, Brix H (2009) Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol Eng 35(2):238–247

    Google Scholar 

  6. Vymazal J, Greenway M, Tonderski K, Brix H, Mander Ü (2006) Constructed wetlands for wastewater treatment. In: Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (eds) Wetlands and natural resource management. Heidelberg, Berlin, pp 69–96

    Chapter  Google Scholar 

  7. Birch GF, Matthai C, Fazeli MS, Suh JY (2004) Efficiency of a constructed wetland in removing contaminants from stormwater. Wetlands 24(7):459–466

    Article  Google Scholar 

  8. Vymazal J, Švehla J, Kropfelova L, Chrastny V (2007) Trace elements in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Sci Total Environ 380:154–162

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Zhang W, Qu P, Wang M (2016) Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands. Front Environ Sci Eng 10(2):262–269. doi:10.1007/s11783-014-0746-x

    Article  CAS  Google Scholar 

  10. Arivoli A, Mohanraj R, Seenivasan R (2015) Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environ Sci Pollut Res 22:13336–13343

    Article  CAS  Google Scholar 

  11. Singh RP, Fu DF, Fu DN, Juan H (2014) Pollutant removal efficiency of vertical sub-surface upward flow constructed wetlands for highway runoff treatment. Arab J Sci Eng 39:3571–3578

    Article  CAS  Google Scholar 

  12. Lakatos G (2000) Optimization of constructed wetlands for treatment of petrochemical waste waters in Hungary. In: Reddy R (ed) Proceedings of seventh international conference on wetland systems for water pollution control, vol 3. Boca Raton, p 1279

    Google Scholar 

  13. Revitt M, Worall P, Brewer D (2000) The integration of constructed wetlands in to a new treatment system for airport runoff. In: Reddy KR (ed) Proceedings of seventh international conference on wetland systems for water pollution control, vol 3. Boca Raton, pp 1309–1316

    Google Scholar 

  14. Gasiunas V, Strusevičius Z, Strusevičiéne MS (2005) Pollutant removal by horizontal subsurface flow constructed wetlands in Lithuania. J Environ Sci Heal 40A:1467–1478

    Article  CAS  Google Scholar 

  15. Lee CY, Lee CC, Lee FY, Tseng SK, Liao CJ (2004) Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads. Bioresour Technol 92:173–179

    Article  CAS  PubMed  Google Scholar 

  16. Comeau YJ, Brisson JP, Réville C, Forget C, Drizo A (2001) Phosphorus removal from trout farm effluents by constructed wetlands. Water Sci Technol 44(11/12):55–60

    CAS  PubMed  Google Scholar 

  17. Schulz C, Gelbrecht J, Rennert B (2003) Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 217:207–221

    Article  CAS  Google Scholar 

  18. Headley TR, Huett DO, Davison L (2001) Te removal of nutrients from plant nursery irrigation runoff in subsurface horizontal-flow wetlands. Water Sci Technol 44(11/12):77–84

    CAS  PubMed  Google Scholar 

  19. Zhou QR, Zhang Y, Shi Y, Li J, Paing J, Picot B (2004) Nitrogen and phosphorus removal in subsurface constructed wetland treating agriculture stormwater runoff. In: Proceedings of ninth international conference on wetland systems for water pollution control, ASTEE 2004 and Cemegref, Lyon, pp 75–82

    Google Scholar 

  20. Bulc TG, Ojsrsek A, Vrhovšek D (2006) The use of constructed wetland for textile wastewater treatment. In: Dias V, Vymazal J (eds) Proceedings of the tenth international conference on wetland systems for water pollution control. Maotdr, Lisbon, pp 1667–1675

    Google Scholar 

  21. Dias VN, Canseiro C, Gomes AR, Correia B, Bicho C (2006) Constructed wetlands for wastewater treatment in Portugal: a global overview. In: Dias V, Vymazal J (eds) Proceedings of tenth international conference on wetland systems for water pollution control. Maotdr, Lisbon, pp 91–101

    Google Scholar 

  22. Calheiros CSC, Rangel AOSS, Castro PKL (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res 41:1790–1798

    Article  CAS  PubMed  Google Scholar 

  23. Wojciechowska E, Obarska-Pempkowiak H (2008) Performance of reed beds supplied with municipal landfill leachate. In: Vymazal J (ed) Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer, Dordrecht, pp 251–265

    Chapter  Google Scholar 

  24. Davison L, Headley T, Pratt K (2005) Aspects of design, structure, performance and operation of reed beds—eight years’ experience in northeastern New South Wales, Australia. Water Sci Technol 51:129–138

    CAS  PubMed  Google Scholar 

  25. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  26. Shelef O, Gross A, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976

    Article  CAS  PubMed  Google Scholar 

  27. Shelef O, Gross A, Rachmilevitch S (2013) Role of plants in a constructed wetlands: current and new perspectives. Water 5:405–419

    Article  Google Scholar 

  28. Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press, New York

    Google Scholar 

  29. Founder N, Headley T (2010) Systematic classification, nomenclature and reporting for constructed treatment wetlands. In: Vymazal J (ed) Water and nutrient management in natural. Springer, New York, pp 191–219

    Google Scholar 

  30. Zhang BY, Zheng JS, Sharp RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci 2:1315–1325

    Article  Google Scholar 

  31. Kowalik P, Mierzejewski M, Obarska-Pempkowiak H, Toczyłowska I (1995) Constructed wetlands for wastewater treatment from small communities. Gdańsk Technology University, Gdańsk, p 70

    Google Scholar 

  32. Kadlec RH, Wallace SD (2009) Treatment wetlands, 2nd edn. Taylor and Francis, Boca Raton

    Google Scholar 

  33. Anderson JL, Bastviken SK, Tonderski KS (2005) Free water surface wetlands for wastewater treatment in Sweden: nitrogen and phosphorus removal. Water Sci Technol 51:39–46

    Google Scholar 

  34. Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427

    Article  CAS  PubMed  Google Scholar 

  35. Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetland: a review. Crit Rev Env Sci Tec 29:83–146

    Article  CAS  Google Scholar 

  36. Odum HT, Wojcik W, Pritchard L, Ton S, Delfino JJ, Wojcik M, Leszczynski S, Patel JD, Doherty SJ, Stasik J (2000) Heavy metals in the environment, using wetlands for their removal. CRC Press, Boca Raton, p 326

    Google Scholar 

  37. Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  CAS  Google Scholar 

  38. Wetzel RG (2001) Fundamental processes within natural and constructed wetland ecosystems: short-term versus long-term objectives. Water Sci Technol 44:1–8

    CAS  PubMed  Google Scholar 

  39. Thullen JS, Sartoris JJ, Walton WE (2002) Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production. Ecol Eng 18:441–457

    Article  Google Scholar 

  40. Kedlec RH (2009) Comparison of free water and horizontal subsurface treatment wetlands. Ecol Eng 35:159–174

    Article  Google Scholar 

  41. Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Envir Sci Tech Lib 45:61–69

    Article  CAS  Google Scholar 

  42. Guittonny-Philippe A, Petit ME, Masotti V, Monnier Y, Malleret L, Coulomb B, Combroux I, Baumberger T, Viglione J, Laffont-Schwob I (2015) Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. J Environ Manage 147:108–123

    Article  CAS  PubMed  Google Scholar 

  43. Zheng Y, Wang YC, Ge Y, Dzakpasu M, Zhao Y, Xiong J (2015) Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in North Western China. Ecol Eng 83:268–275

    Article  Google Scholar 

  44. Goulet RR, Pick FR (2001) The effects of cattails (Typha latifolia L.) on concentrations and partitioning of metals in surficial sediments of surface-flow constructed wetlands. Water Air Soil Poll 132:275–291

    Article  CAS  Google Scholar 

  45. Adhikari U, Harrigan T, Reinhold DM (2015) Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater. Ecol Eng 78:6–14

    Article  Google Scholar 

  46. El-Sheikh MA, Saleh HI, El-Quosy DE, Mahmoud AA (2010) Improving water quality in polluted drains with free water surface constructed wetlands. Ecol Eng 36:1478–1484

    Article  Google Scholar 

  47. Hsueh M, Yang L, Hsieh L, Lin HJ (2014) Nitrogen removal along the treatment cells of a free-water surface constructed wetland in subtropical Taiwan. Ecol Eng 73:579–587

    Article  Google Scholar 

  48. Kong L, Wang YB, Zhao LN, Chen ZH (2009) Enzyme and root activities in surface-flow constructed wetlands. Chemosphere 76:601–608

    Article  CAS  PubMed  Google Scholar 

  49. Bragato C, Schiavon M, Polese R, Ertani A, Pittarello M, Malagoli M (2009) Seasonal variations of Cu, Zn, Ni and Cr concentration in Phragmites australis (Cav.) Trin ex steudel in a constructed wetland of North Italy. Desalination 246:35–44

    Article  CAS  Google Scholar 

  50. Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. Ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975

    Article  CAS  PubMed  Google Scholar 

  51. Wang W, Gao J, Guo X, Li W, Tian X, Zhang R (2012) Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river. Ecol Eng 49:93–103

    Article  Google Scholar 

  52. Beutel MW, Newton CD, Brouillard ES, Watts RJ (2009) Nitrate removal in surface-flow constructed wetlands treating dilute agricultural runoff in the lower Yakima Basin, Washington. Ecol Eng 35:1538–1546

    Article  Google Scholar 

  53. Abe K, Komada M, Ookuma A, Itahashi S, Banzai K (2014) Purification performance of a shallow free-water-surface constructed wetland receiving secondary effluent for about 5 years. Ecol Eng 69:129–133

    Article  Google Scholar 

  54. Hussain SA, Prasher SO, Patel RM (2012) Removal of ionophoric antibiotics in free water surface constructed wetlands. Ecol Eng 41:13–21

    Article  Google Scholar 

  55. Regueiro J, Matamoros V, Thibaut R, Porte C, Bayona JM (2013) Use of effect-directed analysis for the identification of organic toxicants in surface flow constructed wetland sediments. Chemosphere 91:1165–1175

    Article  CAS  PubMed  Google Scholar 

  56. Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R, Martin-Villacorta J, Becares E, Bayona JM (2010) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res 44:3669–3678

    Article  CAS  PubMed  Google Scholar 

  57. Badhe N, Saha S, Biswas R, Nandy T (2014) Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland. Bioresour Technol 169:596–604

    Article  CAS  PubMed  Google Scholar 

  58. Gunes K, Tuncsiper B, Ayaz S, Drizo A (2012) The ability of free water surface constructed wetland system to treat high strength domestic wastewater: a case study for the Mediterranean. Ecol Eng 44:278–284

    Article  Google Scholar 

  59. Chen Z, Wu S, Braeckevelt M, Paschke H, Kästner M, Köser H, Kuschk P (2012) Effect of vegetation in pilot-scale horizontal subsurface flow constructed wetlands treating sulphate rich groundwater contaminated with a low and high chlorinated hydrocarbon. Chemosphere 89:724–731

    Article  CAS  PubMed  Google Scholar 

  60. Siracusa G, La Rosa AD (2006) Design of a constructed wetland for wastewater treatment in a Sicilian town and environmental evaluation using the energy analysis. Ecol Model 197:490–497

    Article  Google Scholar 

  61. Fleming-Singer MS, Home AJ (2006) Balancing wildlife needs and nitrate removal in constructed wetlands: the case of the Irvine Ranch Water District’s San Joaquin Wildlife Sanctuary. Ecol Eng 26:147–166

    Article  Google Scholar 

  62. Cicek N, Lambert S, Venema HD, Snelgrove KR, Bibeau EL, Grosshans R (2006) Nutrient removal and bio-energy production from Netley-Libau Marsh at Lake Winnipeg through annual biomass harvesting. Biomass Bioenergy 30:529–536

    Article  CAS  Google Scholar 

  63. Deublein D, Steinhauser A (2010) Biogas from waste and renewable resources: an introduction. Wiley-VCH, New York, p 572

    Book  Google Scholar 

  64. Błażejewski R, Murat-Błażejewska S (1996) Soil clogging phenomena in constructed wetlands with subsurface flow. In: Fifth international conference on wetland systems for water pollution control IV/3, Vienna, pp 1–7

    Google Scholar 

  65. Drizo A, Frost CA, Grace J, Smith KA (1999) Physico-chemical screening of phosphate-removing substrates for use in constructed wetland system. Water Res 33:3595–3602

    Article  CAS  Google Scholar 

  66. Haynes RJ (2015) Use of industrial wastes as media in constructed wetlands and filter beds 0 prospects for removal of phosphate and metals from wastewater streams. Crit Rev Env Sci Tec 45:1041–1103

    Article  CAS  Google Scholar 

  67. Hua T, Haynes RJ, Zhou YF, Boullemant A, Chandrawana I (2015) Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkine drainage in constructed wetlands+adsorption studies. Water Res 71:32–41

    Article  CAS  PubMed  Google Scholar 

  68. Vymazal J, Kröpfelova L (2007) Removal of nitrogen in constructed wetlands with horizontal subsurface flow: a review. Wetlands 29(4):1114–1124

    Article  Google Scholar 

  69. Huang L, Gao X, Liu M, Du G, Guo J, Ntakirutimana T (2012) Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro-polluted river water. Ecol Eng 46:98–106

    Article  CAS  Google Scholar 

  70. Mustapha HI, van Bruggen JJA, Lens PNL (2015) Vertical subsurface flow constructed wetlands for polishing secondary Kaduna refinery wastewater in Nigeria. Ecol Eng 84:588–595

    Article  Google Scholar 

  71. Çakir R, Gidirislioglu A, Çebi U (2015) A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters. J Environ Econ Manag 16:121–128

    Google Scholar 

  72. Brezinova T, Vymazal J (2015) Seasonal growth pattern of Phalaris arundinacea in constructed wetlands with horizontal subsurface flow. Ecol Eng 80:62–68

    Article  Google Scholar 

  73. Rai UN, Upadhyay AK, Singh NK, Dwivedi S, Tripathi RD (2015) Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecol Eng 81:115–122

    Article  Google Scholar 

  74. Leto C, Tuttolomondo T, LaBella S, Leone R, Licata M (2013) Effects of plant species in a horizontal subsurface flow constructed wetland—phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecol Eng 61:282–291

    Article  Google Scholar 

  75. Silveira DD, Belli Filho P, Philippi LS, Kim B, Molle P (2015) Influence of partial saturation on total nitrogen removal in a single-stage French constructed wetland treating raw domestic wastewater. Ecol Eng 77:257–264

    Article  Google Scholar 

  76. Zhang DQ, Gersberg RM, Hua T, Zhu J, Tuan NA, Tan SK (2012) Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates. Chemosphere 87:273–277

    Article  CAS  PubMed  Google Scholar 

  77. Morvannou A, Choubert JM, Vanclooster M, Molle P (2014) Modeling nitrogen removal in a vertical flow constructed wetland treating directly domestic wastewater. Ecol Eng 70:379–386

    Article  Google Scholar 

  78. Lesage E, Rousseau DPL, Meers E, Van de Moortel AMK, Du Laing G, Tack FMG, De Pauw N, Verloo MG (2007) Accumulation of metals in the sediment and reed biomass of a combined constructed wetland treating domestic wastewater. Water Air Soil Pollut 183:253–264

    Article  CAS  Google Scholar 

  79. Pétémanagnan Ouattara JM, Coulibaly L, Tiho S, Gourčne G (2009) Comparison of macrofauna communities in sediments of the beds of vertical flow constructed wetlands planted with Panicum maximum (Jacq.) treating domestic wastewater. Ecol Eng 35:1237–1242

    Article  Google Scholar 

  80. Teles Gomes MV, de Souza RR, Silva Teles V, Araújo Mendes E (2014) Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere 103:228–233

    Article  PubMed  CAS  Google Scholar 

  81. Akratos CS, Papaspyros JNE, Tsihrintzis VA (2009) Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation. Bioresour Technol 100:586–596

    Article  CAS  PubMed  Google Scholar 

  82. Vymazal J, Kropfelova L, Svehla J, Stichova J (2010) Can multiple harvest of aboveground biomass enhance removal of trace elements in constructed wetlands receiving municipal sewage? Ecol Eng 36:939–945

    Article  Google Scholar 

  83. Chang JJ, Wu SQ, Dai YR, Liang W, Wu ZB (2012) Treatment performance of integrated vertical-flow constructed wetland plots for domestic wastewater. Ecol Eng 44:152–159

    Article  Google Scholar 

  84. Karathanasis AD, Potter CL, Coyne MS (2003) Vegetation effect on faecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol Eng 20:157–169

    Article  Google Scholar 

  85. Fraser LH, Carty SM, Steer D (2004) A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour Technol 94:185–192

    Article  CAS  PubMed  Google Scholar 

  86. Austin DC (2006) Influence of cation exchange capacity (CEC) in a tidal flow, flood and drain wastewater treatment wetland. Ecol Eng 28:35–43

    Article  Google Scholar 

  87. Molle P (2014) French vertical flow constructed wetlands: a need of a better understanding of the role of the deposit layer. Water Sci Technol 69(1):106

    Article  CAS  PubMed  Google Scholar 

  88. Vymazal J (2013) The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res 47(14):4795–4811

    Article  CAS  PubMed  Google Scholar 

  89. Rai UN, Singh NK, Verma S, Prasad D, Upadhyay AK (2011) Perspectives in plant based management of Ganga water pollution: a negative carbon technique to rehabilitate river ecosystem. Appl Bot Abs 31(1):64–81

    Google Scholar 

  90. Ławniczak AE (2010) The role of emergent macrophytes in nutrient cycling in Lake Niepruszewskie (western Poland). Oceanol Hydrobiol Stud 39(2):75–83

    Article  Google Scholar 

  91. Ławniczak AE (2011) Nitrogen, phosphorus and potassium resorption efficiency and proficiency of four emergent macrophytes from nutrient-rich wetlands. Pol J Environ Stud 20(5):1227–1234

    Google Scholar 

  92. Singh G, Bhati M, Rathod T (2010) Use of tree seedlings for the phytoremediation of a municipal effluent used in dry areas of north-western India: plant growth and nutrient uptake. Ecol Eng 36:1299–1306

    Article  Google Scholar 

  93. Headley TR, Herity E, Davison L (2005) Treatment at different depths and vertical mixing within a 1-m deep horizontal subsurface-flow wetland. Ecol Eng 25:567–582

    Article  Google Scholar 

  94. Verkleij JAC, Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 172–182

    Google Scholar 

  95. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 9:869–881

    Article  CAS  Google Scholar 

  96. Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463

    Article  CAS  PubMed  Google Scholar 

  97. Alonso-Castro AJ, Carranza-Alvarez C, Alfaro-De la Torre MC, Chavez-Guerrero L, Garcıa-De la Cruz RF (2009) Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions. Arch Environ Con Tox 57:688–696

    Article  CAS  Google Scholar 

  98. Marques APGC, Rangel AOSS, Castro PML (2007) Zinc accumulation in plant species indigenous to a Portuguese polluted site: relation with soil contamination. J Environ Qual 36:646–653

    Article  CAS  PubMed  Google Scholar 

  99. Otte ML, Javob DL (2006) Constructed wetlands for phytoremediation. In: Mackova M et al (eds) Phytorenediation rhizoremediation. Springer, New York, pp 57–67

    Chapter  Google Scholar 

  100. Drzewiecka K, Borowiak K, Mleczek M, Zawada I, Goliński P (2010) Cadmium and lead accumulation in two littoral plants of five lakes of Poznan City, Poland. Acta Biol Cracov Bot 52(2):59–68

    Google Scholar 

  101. Drzewiecka K, Borowiak K, Mleczek M, Zawada I, Goliński P (2011) Bioaccumulation of zinc and copper by Phragmites australis (Cav.) Trin ex Steudel and Typha angustifolia (L.) growing in natural water ecosystems. Fresen Environ Bull 20(2):325–333

    CAS  Google Scholar 

  102. Bose S, Vedamati J, Rai V, Ramanathan AL (2008) Metal uptake and transport by Typha angustata L. grown on metal contaminated waste amended soil: an implication of phytoremediation. Geoderma 145:136–142

    Article  CAS  Google Scholar 

  103. Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56:63–72

    Article  CAS  Google Scholar 

  104. Baldantoni D, Ligrone R, Alfani A (2009) Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. J Geochem Explor 101:166–174

    Article  CAS  Google Scholar 

  105. Lewander M, Kautsky MG, Szarek E (1996) Macrophyes as indicator of bioavailable Cd, Pb and Zn flow in the river Przemsza, Katowice Region. Appl Geochem 11:169–173

    Article  CAS  Google Scholar 

  106. Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80

    Article  CAS  PubMed  Google Scholar 

  107. Samecka-Cymerman A, Kempers AJ (2001) Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci Total Environ 281:87–98

    Article  CAS  PubMed  Google Scholar 

  108. Peverly JH, Surface JM, Wang T (1995) Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecol Eng 5:21–35

    Article  Google Scholar 

  109. Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  110. Demirezen D, Aksoy A (2004) Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56:685–696

    Article  CAS  PubMed  Google Scholar 

  111. Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642–647

    Article  CAS  PubMed  Google Scholar 

  112. Vymazal J, Kröpfelova L, Švehla J, Chrastný V, Štíchová J (2009) Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecol Eng 35:303–309

    Article  Google Scholar 

  113. Sasmaz A, Obek E, Hasar H (2009) The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol Eng 33:278–284

    Article  Google Scholar 

  114. Bonanno G, Lo Giudice R (2009) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10:639–645

    Article  CAS  Google Scholar 

  115. Borowiak K, Kanclerz J, Mleczek M, Lisiak M, Drzewiecka K (2016) Accumulation of Cd and Pb in water, sediment and two littoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem. Archiv Environ Protect, 42(3). doi:10.1515/aep-2016-0032

    Google Scholar 

  116. Prado C, Rosa M, Pagano E, Hilal M, Prado FE (2010) Seasonal variability of physiological and biochemical aspects of chromium accumulation in outdoor-grown Salvinia minima. Chemosphere 81:584–593

    Article  CAS  PubMed  Google Scholar 

  117. Zapater-Pereyra M, Ilyas H, Lavrni S, van Bruggen JJA, Lens PNL (2015) Evaluation of the performance and space requirement by three different hybrid constructed wetlands in a stack arrangement. Ecol Eng 82:290–300

    Article  Google Scholar 

  118. Ye ZH, Whiting SN, Lin ZQ, Lytle CM, Qian JH, Terry N (2001) Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. J Environ Qual 30:1464–1473

    Article  CAS  PubMed  Google Scholar 

  119. Bah AM, Dai H, Zhao J, Sun H, Cao F, Zhang G, Wu F (2011) Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biol Trace Elem Res 142:77–92

    Article  CAS  PubMed  Google Scholar 

  120. Carranza-Álvarez C, Alonso-Castro AJ, Alfaro-De La Torre MC, García-De La Cruz RF (2008) Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water Air Soil Poll 188:297–309

    Article  CAS  Google Scholar 

  121. Duman F, Erkan U, Koca FD (2005) Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Environ Sci Pollut Res 22(22):17886–17896. doi:10.1007/s11356-015-4979-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Ryszard Błażejweski for his comments and suggestions, which helped us to considerably improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaudia Borowiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borowiak, K., Kanclerz, J. (2016). Phytoremediation Applications for Waste Water and Improved Water Quality. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-41811-7_12

Download citation

Publish with us

Policies and ethics