Skip to main content

Bio-retention Systems for Storm Water Treatment and Management in Urban Systems

  • Chapter
  • First Online:
Phytoremediation

Abstract

Among different anthropogenic activities, urbanization has greatly influenced the hydrological cycle. Due to increased impervious surfaces, the amount of infiltration has been reduced, thereby increasing the runoff volume leading to flood conditions even for low rainfall events. Storm water flow along these impermeable surfaces finally ends up in surface water reservoirs. Urban systems are fundamentally responsible for a lot of pollutants by different sources: vehicle, industries, atmospheric deposition, soil erosion, etc., which may release various types of pollutants such as metals, organics, nutrients, oil and grease, detergents, surfactants, etc., into the atmosphere. With the storm water runoff, these pollutants may end up in surface waters. This indicates the importance of storm water treatment. Although there are several storm water treatment methods available, low-cost environmental-friendly methods (e.g., bio-retention systems) will be more sustainable with urban systems. Bio-retention systems can manage storm water and improve water quality through containment and remediation of pollutants within the urban system. However, the limitation of these systems is its finite capacity to hold contaminants. Hence, suitable plants grown along the bio-retention systems will be an effective phytoremediation option to address the challenges encountered in these remedial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Göbel P, Dierkes C, Coldewey W (2007) Storm water runoff concentration matrix for urban areas. J Contam Hydrol 91:26–42

    Article  PubMed  CAS  Google Scholar 

  2. Erickson AJ, Weiss PT, Gulliver JS (2013) Optimizing storm water treatment practices. Springer, New York

    Book  Google Scholar 

  3. Burns MJ, Fletcher TD, Walsh CJ, Ladson AR, Hatt BE (2012) Hydrologic shortcomings of conventional urban storm water management and opportunities for reform. Landscape Urban Plan 105:230–240

    Article  Google Scholar 

  4. Elliott A, Trowsdale S (2007) A review of models for low impact urban storm water drainage. Environ Model Software 22:394–405

    Article  Google Scholar 

  5. Damodaram C, Giacomoni MH, Prakash Khedun C, Holmes H, Ryan A, Saour W, Zechman EM (2010) Simulation of combined best management practices and low impact development for sustainable storm water management. Wiley Online Library

    Google Scholar 

  6. Roy AH, Wenger SJ, Fletcher TD, Walsh CJ, Ladson AR, Shuster WD, Thurston HW, Brown RR (2008) Impediments and solutions to sustainable, watershed-scale urban storm water management: lessons from Australia and the United States. Environ Manag 42:344–359

    Article  Google Scholar 

  7. Ahiablame LM, Engel BA, Chaubey I (2012) Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Poll 223:4253–4273

    Article  CAS  Google Scholar 

  8. Davis AP, Hunt WF, Traver RG, Clar M (2009) Bio-retention technology: overview of current practice and future needs. J Environ Eng 135:109–117

    Article  CAS  Google Scholar 

  9. Muha NE, Sidek LM (2015) Bio-retention system as storm water quality improvement mechanism. Sci Res J 3(2):39–46

    Google Scholar 

  10. Davis AP, Shokouhian M, Sharma H, Minami C (2001) Laboratory study of biological retention for urban storm water management. Water Environ Res 73(1):5–14

    Article  CAS  PubMed  Google Scholar 

  11. Parrish ZD, White JC, Isleyen M, Gent MP, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64:609–618

    Article  CAS  PubMed  Google Scholar 

  12. Andreolli M, Lampis S, Poli M, Gullner G, Biró B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92:688–694

    Article  CAS  PubMed  Google Scholar 

  13. Ojoawo SO, Udayakumar G, Naik P (2015) Phytoremediation of phosphorus and nitrogen with Canna x generalis reeds in domestic wastewater through NMAMIT constructed wetland. Aquatic Procedia 4:349–356

    Article  Google Scholar 

  14. Macek T, Mackova M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  PubMed  Google Scholar 

  15. Laurenson G, Laurenson S, Bolan N, Beecham S, Clark I (2013) The role of Bio-retention systems in the treatment of storm water. Adv Agron 120(120):223–274

    Article  CAS  Google Scholar 

  16. Wong T, Breen PF, Lloyd SD (2000) Water sensitive road design: design options for improving storm water quality of road runoff. CRC for Catchment Hydrology, Melbourne

    Google Scholar 

  17. Drapper D, Tomlinson R, Williams P (2000) Pollutant concentrations in road runoff: southeast Queensland case study. J Environ Eng 126:313–320

    Article  CAS  Google Scholar 

  18. Tchobanoglous G, Burton F, Stensel D (1991) Wastewater engineering (treatment, disposal and reuse). Metcalf and Eddy, New York, p 1334

    Google Scholar 

  19. Omernik JM (1976) The influence of land use on stream nutrient levels. US Environmental Protection Agency, Office of Research and Development, Corvallis Environmental Research Laboratory, Eutrophication Survey Branch

    Google Scholar 

  20. Meybeck M (1998) Man and river interface: multiple impacts on water and particulates chemistry illustrated in the Seine river basin, Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces. Springer, New York

    Google Scholar 

  21. Vallentyne JR (2008) The Algal Bowl: overfertilization of the World’s freshwaters and estuaries. Earthscan, London

    Google Scholar 

  22. Lake Simcoe Region Conservation Authority (2007) Lake Simcoe Basin storm water management and retrofit opportunities. Lake Simcoe Region Conservation Authority, Newmarket. http://www.lsrca.on.ca/pdf/reports/stormwater_retrofit.pdf

  23. Maestre A, Pitt R, Williamson D (2004) Nonparametric statistical tests comparing first flush and composite samples from the national storm water quality database. Models Appl Urban Water Syst 12:317–338

    Google Scholar 

  24. Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2008) Eutrophication of US freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  CAS  Google Scholar 

  25. Hoyer J, Dickhaut W, Kronawitter L, Weber B (2011) Water sensitive urban design: principles and inspiration for sustainable storm water management in the city of the future. Jovis Hamburg, Berlin

    Google Scholar 

  26. Glossary of Meteorology (2009) Urban heat island. American Meteorological Society

    Google Scholar 

  27. Roesner LA, Bledsoe BP, Brashear RW (2001) Are best-management-practice criteria really environmentally friendly? J Water Res Plan Manag 127:150–154

    Article  Google Scholar 

  28. Sieker F (2003) Naturnahe Regenwasserbewirtschaftung in Siedlungsgebieten. Expert Verlag, Germany

    Google Scholar 

  29. Wong TH (2006) An overview of water sensitive urban design practices in Australia. Water Pract Technol 1 doi:10.2166/WPT.2006018

  30. Thomas JF (1997) Wastewater re-use, storm water management and the national water reform agenda. CSIRO Land and Water

    Google Scholar 

  31. Newman P, Kenworthy J (1999) Sustainability and cities: overcoming automobile dependence. Island Press, Washington, DC

    Google Scholar 

  32. Wong TH, Eadie ML (2000) Water sensitive urban design: a paradigm shift in urban design. 10th World Water Congress: Water, the Worlds Most Important Resource, 2000. International Water Resources Association, 1281

    Google Scholar 

  33. Niemczynowicz J (1999) Urban hydrology and water management–present and future challenges. Urban Water 1:1–14

    Article  Google Scholar 

  34. Burkhard R, Deletic A, Craig A (2000) Techniques for water and wastewater management: a review of techniques and their integration in planning. Urban Water 2:197–221

    Article  CAS  Google Scholar 

  35. Echols S (2007) Artful rainwater design in the urban landscape. J Green Building 2:101–122

    Article  Google Scholar 

  36. Urbonas B, Stahre P (1993) Storm water: best management practices and detention for water quality, drainage, and CSO management. Prentice Hall, Englewood Cliffs

    Google Scholar 

  37. Feather PM, Amacher GS (1994) Role of information in the adoption of best management practices for water quality improvement. Agric Econ 11:159–170

    Article  Google Scholar 

  38. Villarreal EL, Semadeni-Davies A, Bengtsson L (2004) Inner city storm water control using a combination of best management practices. Ecol Eng 22:279–298

    Article  Google Scholar 

  39. Brown RR (2005) Impediments to integrated urban storm water management: the need for institutional reform. Environ Manag 36:455–468

    Article  Google Scholar 

  40. Brown R (2003) Institutionalisation of integrated urban storm water management: multiple-case analysis of local management reform across metropolitan Sydney. Doctor of Philosophy thesis. School of Civil and Environmental Engineering, University of New South Wales

    Google Scholar 

  41. Charlesworth S, Harker E, Rickard S (2003) A review of sustainable drainage systems (SuDS): a soft option for hard drainage questions? Geography 88:99–107

    Google Scholar 

  42. Charlesworth S (2010) A review of the adaptation and mitigation of global climate change using sustainable drainage in cities. J Water Climate Change 1:165–180

    Article  Google Scholar 

  43. Woods-Ballard B, Kellagher R, Martin P, Jefferies C, Bray R, Shaffer P (2007) The SUDS manual. Ciria, London

    Google Scholar 

  44. Cullingworth JB, Nadin V (2002) Town and Country Planning in the UK. Psychology Press, Routledge

    Google Scholar 

  45. Andoh RY, Iwugo KO (2002) Sustainable urban drainage systems: a UK perspective. 9ICUD conference, Portland

    Google Scholar 

  46. Water M (2005) WSUD engineering procedures: storm water. Csiro, Melbourne

    Google Scholar 

  47. Dietz ME (2007) Low impact development practices: a review of current research and recommendations for future directions. Water Air Soil Pollut 186:351–363

    Article  CAS  Google Scholar 

  48. Liu J, Sample DJ, Bell C, Guan Y (2014) Review and research needs of Bio-retention used for the treatment of urban storm water. Water 6:1069–1099

    Article  Google Scholar 

  49. North Shore City (2008) North Shore City Bio-retention Guidelines. Auckland

    Google Scholar 

  50. Clar ML, Barfield BJ, O’connor TP (2004) Storm water best management practice design guide, vol. 2, vegetative biofilters. National Risk Management Research Laboratory USEPA, Cincinnati

    Google Scholar 

  51. Hatt BE, Fletcher TD, Deletic A (2009) Hydrologic and pollutant removal performance of storm water biofiltration systems at the field scale. J Hydrol 365:310–321

    Article  CAS  Google Scholar 

  52. Beecham SC (2003) Water sensitive urban design: a technological assessment. Waterfall J Storm water Industry Assoc 17:5–13

    Google Scholar 

  53. Kazemi F, Beecham S, Gibbs J (2009) Streetscale Bio-retention basins in Melbourne and their effect on local biodiversity. Ecol Eng 35:1454–1465

    Article  Google Scholar 

  54. Coffman L (2000) Low-impact development design strategies, an integrated design approach. Department of Environmental Resource, Programs and Planning Division, Prince George’s Country, Maryland

    Google Scholar 

  55. Perrin C, Milburn L, Szpir L, Hunt W, Bruce S, Mclendon R, Job S, Line D, Lindbo D, Smutko S (2011) Low impact development: a guidebook for North Carolina (AG-716). NC Cooperative Extension Service, NC State University

    Google Scholar 

  56. Hinman C, Puget Sound Action Team (2005) Low impact development: technical guidance manual for Puget Sound, Puget Sound Action Team

    Google Scholar 

  57. Dhalla S, Zimmer C (2010) Low impact development storm water management planning and design guide. Storm water Guide. Toronto and Region Conservation Authority, Toronto

    Google Scholar 

  58. Rusciano G, Obropta C (2007) Bio-retention column study: fecal coliform and total suspended solids reductions. Trans ASABE 50:1261–1269

    Article  Google Scholar 

  59. Debusk K, Wynn T (2011) Storm-water Bio-retention for runoff quality and quantity mitigation. J Environ Eng 137:800–808

    Article  CAS  Google Scholar 

  60. Hunt W, Jarrett A, Smith J, Sharkey L (2006) Evaluating Bio-retention hydrology and nutrient removal at three field sites in North Carolina. J Irrig Drain Eng 132:600–608

    Article  Google Scholar 

  61. Davis AP (2008) Field performance of bio-retention: hydrology impacts. J Hydrol Eng 13:90–95

    Article  Google Scholar 

  62. Li H, Sharkey LJ, Hunt WF, Davis AP (2009) Mitigation of impervious surface hydrology using Bio-retention in North Carolina and Maryland. J Hydrol Eng 14:407–415

    Article  Google Scholar 

  63. Dietz ME, Clausen JC (2005) A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut 167:123–138

    Article  CAS  Google Scholar 

  64. Denich CJ, University of Guelph School of Engineering (2009) Assessing the performance of bio-retention under cold climate conditions, University of Guelph

    Google Scholar 

  65. Hatt B, Deletic A, Fletcher T (2007) Storm water reuse: designing biofiltration systems for reliable treatment. Water Sci Technol 55:201–209

    Article  CAS  PubMed  Google Scholar 

  66. Henderson C, Greenway M, Phillips I (2007) Removal of dissolved nitrogen, phosphorus and carbon from storm water by biofiltration mesocosms. Water Sci Technol 55:183–191

    Article  CAS  PubMed  Google Scholar 

  67. Hsieh C-H, Davis AP (2005) Evaluation and optimization of bio-retention media for treatment of urban storm water runoff. J Environ Eng 131:1521–1531

    Article  CAS  Google Scholar 

  68. Hsieh C-H, Davis AP, Needelman BA (2007) Bio-retention column studies of phosphorus removal from urban storm water runoff. Water Environ Res 79:177–184

    Article  CAS  PubMed  Google Scholar 

  69. Coffman L, Green R, Clar M, Bitter S (1994) Development of bio-retention practices for storm water management. In: James W (ed) Current practices in modelling the management of storm water impacts. Lewis, Boca Raton, pp 23–42

    Google Scholar 

  70. Wan X, Lei M, Chen T (2016) Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563–564:796–802

    Article  PubMed  CAS  Google Scholar 

  71. Hunt WF, Lord B, Loh B, Sia A (2014) Plant selection for bio-retention systems and storm water treatment practices. Springer, New York

    Google Scholar 

  72. Schnoor JL, Light LA, Mccutcheon SC, Wolfe NL, Carreia LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  PubMed  Google Scholar 

  73. Susarla S, Bacchus S, Wolfe N, Mccutcheon S (1999) Phytotransformation of perchlorate using parrot-feather. Soil Groundwater Cleanup 2:20–23

    Google Scholar 

  74. Betts KS (1997) Technology update: TPH soil cleanup aided by ground cover. Environ Sci Technol 31:214A–214A

    Google Scholar 

  75. Zhang Z, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovic R (2012) Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma 175:1–8

    Article  CAS  Google Scholar 

  76. Mitton FM, Gonzalez M, Monserrat JM, Miglioranza KS (2016) Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere 148:300–306

    Article  CAS  PubMed  Google Scholar 

  77. Pradhan SP, Conrad J, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contamin 7:467–480

    Article  CAS  Google Scholar 

  78. Szota C, Farrell C, Livesley SJ, Fletcher TD (2015) Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline storm water. Water Res 83:195–204

    Article  CAS  PubMed  Google Scholar 

  79. Lundy L, Ellis JB, Revitt DM (2012) Risk prioritisation of storm water pollutant sources. Water Res 46:6589–6600

    Article  CAS  PubMed  Google Scholar 

  80. Sörme L (2003) Urban heavy metals: stocks and flows. Linköping Studies in Arts and Science, ISSN 0282-9800; 270. Linköping University, Linköping

    Google Scholar 

  81. Kennedy P, Gadd J (2003) Preliminary examination of trace elements in tyres, brake pads, and road bitumen in New Zealand. Prepared for Ministry of Transport, New Zealand, Infrastructure Auckland

    Google Scholar 

  82. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S (2015) Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 127:58–63

    Article  CAS  PubMed  Google Scholar 

  83. Mitch ML (2002) Phytoextraction of toxic metals: a review of biological mechanism. J Environ Qual 31:109–120

    Article  Google Scholar 

  84. Gao S, Ou-Yang C, Tang L, Zhu J-Q, Xu Y, Wang S-H, Chen F (2010) Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. J Hazard Mater 182:591–597

    Article  CAS  PubMed  Google Scholar 

  85. Fritioff Å, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274

    Article  CAS  PubMed  Google Scholar 

  86. Rane NR, Chandanshive VV, Watharkar AD, Khandare RV, Patil TS, Pawar PK, Govindwar SP (2015) Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: an anatomical, enzymatic and pilot scale study. Water Res 83:271–281

    Article  CAS  PubMed  Google Scholar 

  87. Rane NR, Chandanshive VV, Khandare RV, Gholave AR, Yadav SR, Govindwar SP (2014) Green remediation of textile dyes containing wastewater by Ipomoea hederifolia L. RSC Adv 4:36623–36632

    Article  CAS  Google Scholar 

  88. Roy-Poirier A, Champagne P, Filion Y (2010) Review of bio-retention system research and design: past, present, and future. J Environ Eng 136:878–889

    Article  CAS  Google Scholar 

  89. Cosgrove JF, Bergstrom JD (2004) Design and construction of biofiltration basins: lessons learned. World Water & Environmental Resources Congress 2003, 2004. ASCE, pp 1–10

    Google Scholar 

  90. Van Seters T, Smith D, Macmillan G (2006) Performance evaluation of permeable pavement and a Bio-retention swale. In: Proceedings eighth international conference on concrete block paving

    Google Scholar 

  91. Muthanna T, Viklander M, Thorolfsson S (2007) An evaluation of applying existing bio-retention sizing methods to cold climates with snow storage conditions. Water Sci Technol 56:73

    Article  CAS  PubMed  Google Scholar 

  92. Muthanna TM, Viklander M, Gjesdahl N, Thorolfsson ST (2007) Heavy metal removal in cold climate bio-retention. Water Air Soil Pollut 183:391–402

    Article  CAS  Google Scholar 

  93. Muthanna TM, Viklander M, Blecken G, Thorolfsson ST (2007) Snowmelt pollutant removal in bio-retention areas. Water Res 41:4061–4072

    Article  CAS  PubMed  Google Scholar 

  94. Houle JJ, Roseen RM, Ballestero TP, Puls TA, Sherrard J Jr (2013) Comparison of maintenance cost, labor demands, and system performance for LID and conventional storm water management. J Environ Eng 139:932–938

    Article  CAS  Google Scholar 

  95. Thurston HW (2006) Opportunity costs of residential best management practices for storm water runoff control. J Water Res Plan Manag 132:89–96

    Article  Google Scholar 

  96. Sample DJ, Heaney JP, Wright LT, Fan C-Y, Lai F-H, Field R (2003) Costs of best management practices and associated land for urban storm water control. J Water Res Plan Manag 129:59–68

    Article  Google Scholar 

  97. Wong TH, Fletcher TD, Duncan HP, Coleman JR, Jenkins GA (2002) A model for urban storm water improvement conceptualisation. Global Solutions Urban Drain 813:63

    Google Scholar 

  98. Poresky AL, Palhegyi GE (2008) Design and modeling of Bio-retention for hydro modification control: an assessment of alternative model representations. In: Proceedings of the 2008 international low impact development conference, ASCE, Reston

    Google Scholar 

  99. Lucas WC (2009) Design of integrated bioinfiltration-detention urban retrofits with design storm and continuous simulation methods. J Hydrol Eng 15:486–498

    Article  Google Scholar 

  100. Lai F-H, Dai T, Zhen J, Riverson J, Alvi K, Shoemaker L (2007) Sustain-An EPA BMP process and placement tool for urban watersheds. In: Proceedings of the water environment federation, pp 946–968

    Google Scholar 

  101. Brown RA, Hunt WF (2012) Improving Bio-retention/biofiltration performance with restorative maintenance. Water Sci Technol 65:361–367

    Article  CAS  PubMed  Google Scholar 

  102. Paus KH, Morgan J, Gulliver JS, Leiknes T, Hozalski RM (2014) Assessment of the hydraulic and toxic metal removal capacities of Bio-retention cells after 2 to 8 years of service. Water Air Soil Pollut 225:1–12

    Article  CAS  Google Scholar 

  103. Hunt W, Smith J, Jadlocki S, Hathaway J, Eubanks P (2008) Pollutant removal and peak flow mitigation by a Bio-retention cell in urban Charlotte, NC. J Environ Eng 134:403–408

    Article  CAS  Google Scholar 

  104. Davis AP (2007) Field performance of Bio-retention: water quality. Environ Eng Sci 24:1048–1064

    Article  CAS  Google Scholar 

  105. Dietz ME, Clausen JC (2006) Saturation to improve pollutant retention in a rain garden. Environ Sci Technol 40:1335–1340

    Article  CAS  PubMed  Google Scholar 

  106. Sharkey LJ (2006) The performance of Bio-retention areas in North Carolina: a study of water quality, water quantity, and soil media. A thesis published by the Graduate School of North Carolina State University, under the direction of Dr. William Hunt, III

    Google Scholar 

  107. Trowsdale SA, Simcock R (2011) Urban storm water treatment using bio-retention. J Hydrol 397:167–174

    Article  CAS  Google Scholar 

  108. Arnold R (2005) Estimations of copper roof runoff rates in the United States. Integr Environ Assess Manag 1:e15–e32

    Article  Google Scholar 

  109. Athanasiadis K, Horn H, Helmreich B (2010) A field study on the first flush effect of copper roof runoff. Corros Sci 52:21–29

    Article  CAS  Google Scholar 

  110. Wallinder IO, Bahar B, Leygraf C, Tidblad J (2007) Modelling and mapping of copper runoff for Europe. J Environ Monit 9:66–73

    Article  PubMed  Google Scholar 

  111. Greenway M (2015) Storm water wetlands for the enhancement of environmental ecosystem services: case studies for two retrofit wetlands in Brisbane, Australia. J Clean Prod Available from doi:10.1016/j.jclepro.2015.12.081

    Google Scholar 

  112. Sample DJ, Grizzard TJ, Sansalone J, Davis AP, Roseen RM, Walker J (2012) Assessing performance of manufactured treatment devices for the removal of phosphorus from urban storm water. J Environ Manage 113:279–291

    Article  CAS  PubMed  Google Scholar 

  113. Blecken G-T, Zinger Y, Deletić A, Fletcher TD, Hedström A, Viklander M (2010) Laboratory study on storm water biofiltration: nutrient and sediment removal in cold temperatures. J Hydrol 394:507–514

    Article  CAS  Google Scholar 

  114. Bratieres K, Fletcher T, Deletic A, Zinger Y (2008) Nutrient and sediment removal by storm water biofilters: a large-scale design optimisation study. Water Res 42:3930–3940

    Article  CAS  PubMed  Google Scholar 

  115. Shah RA, Kumawat D, Singh N, Wani KA (2010) Water hyacinth (Eichhornia Crassipes) as a remediation tool for dye-effluent pollution. Int J Sci Nat 1:172–178

    Google Scholar 

  116. Wang Z, Zhang Z, Zhang J, Zhang Y, Liu H, Yan S (2012) Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: the effects on the water quality, macrozoobenthos and zooplankton. Chemosphere 89:1255–1261

    Article  CAS  PubMed  Google Scholar 

  117. Malar S, Sahi SV, Favas PJ, Venkatachalam P (2015) Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res 22:4597–4608

    Article  CAS  Google Scholar 

  118. Chirakkara RA, Reddy KR, Cameselle C (2015) Electrokinetic amendment in phytoremediation of mixed contaminated soil. Electrochim Acta 181:179–191

    Article  CAS  Google Scholar 

  119. Søberg LC, Hedström A, Blecken G-T, Viklander M (2014) Metal uptake in three different plant species used for cold climate biofilter systems. In: Paper presented at international conference on urban drainage, Sarawak, Malaysia

    Google Scholar 

  120. Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage 163:125–133

    Article  CAS  PubMed  Google Scholar 

  121. Greger M, Kautsky L, Sandberg T (1995) A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity. Environ Exp Bot 35:215–225

    Article  CAS  Google Scholar 

  122. Noraho N, Gaur J (1995) Effect of cations, including heavy metals, on cadmium uptake by Lemna polyrhiza L. Biometals 8:95–98

    Article  CAS  Google Scholar 

  123. Lissy PNM, Madhu G (2011) Removal of heavy metals from waste water using water hyacinth. ACEEE Int J Trans Urban Develop (IJTUD) 1:48e52

    Google Scholar 

  124. Gonzalez-Davila M, Santana-Casiano JM, Perez-Pena J, Millero FJ (1995) Binding of Cu (II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ Sci Technol 29:289–301

    Article  CAS  PubMed  Google Scholar 

  125. Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia Crassipes and Centella Asiatica. Int J Environ Sci Develop 2:205

    Article  Google Scholar 

  126. Munda IM, Hudnik V (1988) The effects of Zn, Mn, and Co accumulation on growth and chemical composition of Fucus vesiculosus L under different temperature and salinity conditions. Marine Ecol 9:213–225

    Article  CAS  Google Scholar 

  127. Hammad DM (2011) Cu, Ni and Zn phytoremediation and translocation by water hyacinth plant at different aquatic environments. Australian J Basic Appl Sci 5:11–22

    CAS  Google Scholar 

  128. Singh J, Kalamdhad AS (2013) Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecol Eng 52:59–69

    Article  Google Scholar 

  129. Brima EI, Haris PI (2014) Arsenic removal from drinking water using different biomaterials and evaluation of a phytotechnology based filter. Int Res J Environ Sci 3:39–44

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to offer a special acknowledgment to the National Science Foundation, Sri Lanka for providing funds for a stipend for the first author (grant number RG/2014/EB/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weerasundara, L., Nupearachchi, C.N., Kumarathilaka, P., Seshadri, B., Bolan, N., Vithanage, M. (2016). Bio-retention Systems for Storm Water Treatment and Management in Urban Systems. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-41811-7_10

Download citation

Publish with us

Policies and ethics