Skip to main content

Phytoremediation of PCBs and PAHs by Grasses: A Critical Perspective

  • Chapter
  • First Online:

Abstract

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are two major environmental contaminants which threaten our health and environment. The removal of these key environmental pollutants from the environment is therefore paramount. Among the cleanup methods currently being used, traditional methods such as chemical and physical treatments tend to be expensive, laborious and may cause secondary contamination. Phytoremediation, the use of plants and associated microorganisms, represents a promising, nondestructive and cost-effective in situ technology for the degradation or removal of contaminants. Grasses belonging to the Poaceae family have drawn significant attention in this regard due to their fast growth, dense, fibrous root systems, and the demonstrated fast removal of PAH and PCB compounds from soils in which these plants have been grown. In this review, we review research on the use of grasses for the degradation of PAHs and PCBs and highlight the benefits of this phytoremediation approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mage D, Ozolins G, Peterson P, Webster A, Orthofer R, Vandeweerd V, Gwynne M (1996) Urban air pollution in megacities of the world. Atmos Environ 30(5):681–686

    Article  CAS  Google Scholar 

  2. Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1(1):59–66

    Article  CAS  Google Scholar 

  3. Tang J, Wang R, Niu X, Zhou Q (2010) Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil Tillage Res 110(1):87–93

    Article  Google Scholar 

  4. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  PubMed  Google Scholar 

  5. Blyth W, Shahsavari E, Morrison PD, Ball AS (2015) Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site. J Environ Manage 162:30–36

    Article  CAS  PubMed  Google Scholar 

  6. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736

    Article  CAS  Google Scholar 

  7. Haritash A, Kaushik C (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1):1–15

    Article  CAS  PubMed  Google Scholar 

  8. Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res 20(7):4311–4326

    Article  CAS  Google Scholar 

  9. Campos VM, Merino I, Casado R, Gómez L (2008) Phytoremediation of organic pollutants: a review. Span J Agric Res 6:10

    Article  Google Scholar 

  10. Vijgen J, Abhilash PC, Li Y, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18(2):152–162

    Article  CAS  Google Scholar 

  11. Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013) Necrophytoremediation of phenanthrene and pyrene in contaminated soil. J Environ Manage 122:105–112

    Article  CAS  PubMed  Google Scholar 

  12. Agency for Toxic Substances and Disease Registry (2015) The priority list of hazardous substances that will be the candidates for toxicological profiles. http://www.atsdr.cdc.gov/spl/. Accessed Feb 2015

  13. Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1):81–89

    Article  CAS  PubMed  Google Scholar 

  14. Chekol T (2005) Remediation of persistent organic pollutants (POPs) in two different soils. Remediat J 16(1):117–139

    Article  Google Scholar 

  15. Olson PE, Reardon KF, Pilon-Smits EAH (2004) Ecology of rhizosphere bioremediation. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley-Interscience, Hoboken, pp 317–353

    Google Scholar 

  16. Meggo RE, Schnoor JL, Hu D (2013) Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. Environ Pollut 178:312–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  PubMed  Google Scholar 

  18. Mougin C (2002) Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycycl Aromat Compd 22(5):1011–1043

    Article  CAS  Google Scholar 

  19. Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109(Suppl 1):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Phillips LA, Greer CW, Farrell RE, Germida JJ (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64

    Article  Google Scholar 

  21. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  22. Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11(8):664–691

    Article  CAS  PubMed  Google Scholar 

  23. Islam MS, Ueno Y, Sikder MT, Kurasaki M (2013) Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (JF Gmel) SF Blake as a hyperaccumulator. Int J Phytoremediation 15(10):1010–1021

    Article  CAS  PubMed  Google Scholar 

  24. Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Pokethitiyook P (2013) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut 224(10):1–12

    Article  CAS  Google Scholar 

  25. Campbell S, Arakaki AS, Li QX (2009) Phytoremediation of heptachlor and heptachlor epoxide in soil by Cucurbitaceae. Int J Phytoremediation 11(1):28–38

    Article  CAS  Google Scholar 

  26. Matsumoto E, Kawanaka Y, Yun S-J, Oyaizu H (2009) Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Appl Microbiol Biotechnol 84(2):205–216

    Article  CAS  PubMed  Google Scholar 

  27. Mattina MI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ Pollut 124(3):375–378

    Article  CAS  PubMed  Google Scholar 

  28. Robinson B, Green S, Mills T, Clothier B, Mvd V, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, Cvd D (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Soil Res 41(3):599–611

    Article  Google Scholar 

  29. Schnabel WE, White DM (2001) The effect of mycorrhizal fungi on the fate of aldrin: phytoremediation potential. Int J Phytoremediation 3(2):221–241

    Article  CAS  Google Scholar 

  30. Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59(3):405–413

    Article  CAS  PubMed  Google Scholar 

  31. Harvey P, Campanella B, Castro PL, Harms H, Lichtfouse E, Schäffner A, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9(1):29–47

    Article  CAS  Google Scholar 

  32. Huang X-D, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130(3):465–476

    Article  CAS  PubMed  Google Scholar 

  33. Shahsavari E, Adetutu E, Ball AS (2015) Phytoremediation and necrophytoremediation of petrogenic hydrocarbon-contaminated soils. In: Gill SS, Gill R, Lanza GR, Newman L, Ansari AA (eds) Phytoremediation. Springer International Publishing, Cham, pp 321–334. doi:10.1007/978-3-319-10969-5_26

    Google Scholar 

  34. Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013) Plant residues—a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil. Sci Total Environ 443:766–774

    Article  CAS  PubMed  Google Scholar 

  35. Shahsavari E, Adetutu EM, Taha M, Ball AS (2015) Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. J Environ Manage 155:171–176

    Article  CAS  PubMed  Google Scholar 

  36. Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69(1):483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56(1):15–39

    Article  CAS  PubMed  Google Scholar 

  38. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658

    Article  Google Scholar 

  39. Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19(10):1553–1565

    Article  CAS  Google Scholar 

  40. Dzantor EK, Chekol T, Vough LR (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sci Health A 35(9):1645–1661

    Article  Google Scholar 

  41. Karthikeyan R, Davis LC, Erickson LE, Al-Khatib K, Kulakow PA, Barnes PL, Hutchinson SL, Nurzhanova AA (2004) Potential for plant-based remediation of pesticide-contaminated soil and water using nontarget plants such as trees, shrubs, and grasses. Crit Rev Plant Sci 23(1):91–101

    Article  CAS  Google Scholar 

  42. Lunney AI, Zeeb BA, Reimer KJ (2004) Uptake of weathered DDT in vascular plants: potential for phytoremediation. Environ Sci Technol 38(22):6147–6154

    Article  CAS  PubMed  Google Scholar 

  43. Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165(1–4):195–209

    Article  CAS  Google Scholar 

  44. Singhal V, Rai JPN (2003) Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresour Technol 86(3):221–225

    Article  CAS  PubMed  Google Scholar 

  45. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81(9):1084–1090

    Google Scholar 

  46. Xia HP (2004) Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere 54(3):345–353

    Article  CAS  PubMed  Google Scholar 

  47. Ye M, Sun M, Liu Z, Ni N, Chen Y, Gu C, Kengara FO, Li H, Jiang X (2014) Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. J Environ Manage 141:161–168

    Article  CAS  PubMed  Google Scholar 

  48. Das P, Sarkar D, Makris KC, Datta R (2015) Urea-facilitated uptake and nitroreductase-mediated transformation of 2,4,6-trinitrotoluene in soil using vetiver grass. J Environ Chem Eng 3(1):445–452

    Article  CAS  Google Scholar 

  49. Gomes MP, Moura PAS, Nascentes CC, Scotti MR (2015) Arbuscular mycorrhizal fungi and arsenate uptake by brachiaria grass (Brachiaria decumbens). Bioremediat J 19(2):151–159

    Google Scholar 

  50. Vail A, Wang P, Uefuji H, Samac D, Vance C, Wackett L, Sadowsky M (2015) Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene. Transgenic Res 24(3):475–488

    Article  CAS  PubMed  Google Scholar 

  51. Ndimele P (2010) A review on the phytoremediation of petroleum hydrocarbon. Pak J Biol Sci 13(15):715

    Article  CAS  PubMed  Google Scholar 

  52. Merkl N, Schultze-Kraft R, Infante C (2004) Phytoremediation of petroleum-contaminated soils in the tropics: pre-selection of plant species from eastern Venezuela. J Appl Bot Food Qual 78(3):185–192

    Google Scholar 

  53. Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  PubMed  Google Scholar 

  54. Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012) Endophytes and their role in phytoremediation. Fungal Divers 54(1):11–18

    Article  Google Scholar 

  55. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40(4):923–940

    Article  CAS  Google Scholar 

  56. Ren A, Li C, Gao Y (2011) Endophytic fungus improves growth and metal uptake of Lolium arundinaceum Darbyshire ex. Schreb. Int J Phytoremediation 13(3):233–243

    Article  CAS  PubMed  Google Scholar 

  57. Zamani N, Sabzalian MR, Khoshgoftarmanesh A, Afyuni M (2015) Neotyphodium endophyte changes phytoextraction of zinc in Festuca arundinacea and Lolium perenne. Int J Phytoremediation 17(5):456–463

    Article  CAS  PubMed  Google Scholar 

  58. Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int J Phytoremediation 12(6):535–549

    Article  CAS  PubMed  Google Scholar 

  59. Yin L, Ren A, Wei M, Wu L, Zhou Y, Li X, Gao Y (2014) Neotyphodium coenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int J Phytoremediation 16(3):235–246

    Article  CAS  PubMed  Google Scholar 

  60. Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186(2):1568–1575

    Article  CAS  PubMed  Google Scholar 

  61. Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157(12):3347–3350

    Article  CAS  PubMed  Google Scholar 

  62. Sun K, Liu J, Jin L, Gao Y (2014) Utilizing pyrene-degrading endophytic bacteria to reduce the risk of plant pyrene contamination. Plant Soil 374(1–2):251–262

    Article  CAS  Google Scholar 

  63. Arslan M, Imran A, Khan QM, Afzal M (2015) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 1–15

    Google Scholar 

  64. Ijaz A, Imran A, ul Haq MA, Khan QM, Afzal M (2015) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 1–17

    Google Scholar 

  65. Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–1332

    Article  CAS  PubMed  Google Scholar 

  66. Gaskin S, Soole K, Bentham R (2008) Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. Int J Phytoremediation 10(5):378–389

    Article  CAS  PubMed  Google Scholar 

  67. Germida JJ, Frick CM, Farrell RE (2002) Phytoremediation of oil-contaminated soils. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Developments in soil science, vol 28, Part 2. Elsevier, Amsterdam, pp 169–186

    Google Scholar 

  68. Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20(1):253–265

    Article  CAS  Google Scholar 

  69. Epuri V, Sorensen DL (1997) Benzo (a) pyrene and hexachlorobiphenyl contaminated soil: phytoremediation potential. In: Phytoremediation of soil and water contaminants, Chapter 15. American Chemical Society, Washington, DC, pp 200–222

    Google Scholar 

  70. Banks MK, Lee E, Schwab AP (1999) Evaluation of dissipation mechanisms for benzo[a]pyrene in the rhizosphere of tall fescue. J Environ Qual 28(1):294-298

    Google Scholar 

  71. Chen Y-C, Banks MK (2004) Bacterial community evaluation during establishment of tall fescue (Festuca arundinacea) in soil contaminated with pyrene. Int J Phytoremediation 6(3):227–238

    Article  PubMed  Google Scholar 

  72. Lee S-H, Lee W-S, Lee C-H, Kim J-G (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153(1–2):892–898

    Article  CAS  PubMed  Google Scholar 

  73. Cheema SA, Imran Khan M, Shen C, Tang X, Farooq M, Chen L, Zhang C, Chen Y (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 177(1–3):384–389

    Article  CAS  PubMed  Google Scholar 

  74. D’Orazio V, Ghanem A, Senesi N (2013) Phytoremediation of pyrene contaminated soils by different plant species. Clean Soil Air Water 41(4):377–382

    Article  Google Scholar 

  75. Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z, Ali S, Yang J, Shen K, Chen X, Chen Y (2009) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 166(2–3):1226–1231

    Article  CAS  PubMed  Google Scholar 

  76. Pizarro‐Tobías P, Fernández M, Niqui JL, Solano J, Duque E, Ramos JL, Roca A (2015) Restoration of a Mediterranean forest after a fire: bioremediation and rhizoremediation field‐scale trial. J Microbial Biotechnol 8(1):77–92

    Article  Google Scholar 

  77. Hutchinson SL, Schwab AP, Banks MK (2004) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 355–386

    Google Scholar 

  78. Qiu X, Leland TW, Shah SI, Sorensen DL, Kendall EW (1997) Field study: grass remediation for clay soil contaminated with polycyclic aromatic hydrocarbons. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants, pp 186–199

    Google Scholar 

  79. Xu L, Teng Y, Li Z-G, Norton JM, Luo Y-M (2010) Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: The impact of a rhizobial inoculum. Sci Total Environ 408(5):1007–1013

    Article  CAS  PubMed  Google Scholar 

  80. Tu C, Teng Y, Luo Y, Sun X, Deng S, Li Z, Liu W, Xu Z (2011) PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils. J Soils Sediments 11(4):649–656

    Article  CAS  Google Scholar 

  81. Huesemann MH, Hausmann TS, Fortman TJ, Thom RM, Cullinan V (2009) In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecol Eng 35(10):1395–1404

    Google Scholar 

  82. Mackova M, Prouzova P, Stursa P, Ryslava E, Uhlik O, Beranova K, Rezek J, Kurzawova V, Demnerova K, Macek T (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res 16(7):817–829

    Article  CAS  Google Scholar 

  83. Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30(6):799–804

    Article  CAS  PubMed  Google Scholar 

  84. Zeeb BA, Amphlett JS, Rutter A, Reimer KJ (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB)-contaminated soil. Int J Phytoremediation 8(3):199–221

    Article  CAS  PubMed  Google Scholar 

  85. Ding N, Guo H, Hayat T, Wu Y, Xu J (2009) Microbial community structure changes during Aroclor 1242 degradation in the rhizosphere of ryegrass (Lolium multiflorum L.). FEMS Microbiol Ecol 70(2):305–314

    Article  CAS  Google Scholar 

  86. Li Y, Liang F, Zhu Y, Wang F (2013) Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. J Soils Sediments 13(5):925–931

    Article  CAS  Google Scholar 

  87. Willner D, Hugenholtz P (2013) Metagenomics and community profiling: culture-independent techniques in the clinical laboratory. Clin Microbiol Newslett 35(1):1–9

    Article  Google Scholar 

  88. Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48(20):12221–12228

    Article  CAS  PubMed  Google Scholar 

  89. Liang Y, Meggo R, Hu D, Schnoor JL, Mattes TE (2014) Enhanced polychlorinated biphenyl removal in a switchgrass rhizosphere by bioaugmentation with Burkholderia xenovorans LB400. Ecol Eng 71:215–222

    Article  PubMed  PubMed Central  Google Scholar 

  90. Macek T, Mackova M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18(1):23–34

    Article  CAS  PubMed  Google Scholar 

  91. Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soils Sediments 1(1):37–43

    Article  CAS  Google Scholar 

  92. Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KL, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24(2):109–122

    Article  CAS  Google Scholar 

  93. Pradhan SP, Conrad J, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam 7(4):467–480

    Article  CAS  Google Scholar 

  94. Miya RK, Firestone MK (2000) Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J Environ Qual 29(2):584–592

    Article  CAS  Google Scholar 

  95. C-h H, Banks M (2006) Degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea and associated microbial community changes. Bioremediat J 10(3):93–104

    Article  Google Scholar 

  96. Lu M, Zhang Z-Z, Wang J-X, Zhang M, Xu Y-X, Wu X-J (2014) Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea). Environ Sci Technol 48(2):1158–1165

    Article  CAS  PubMed  Google Scholar 

  97. Lu Y-F, Lu M, Peng F, Wan Y, Liao M-H (2014) Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms. Chemosphere 106:44–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Shahsavari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahsavari, E., Aburto-Medina, A., Taha, M., Ball, A.S. (2016). Phytoremediation of PCBs and PAHs by Grasses: A Critical Perspective. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-41811-7_1

Download citation

Publish with us

Policies and ethics