Skip to main content

Imaging Assessment of the Knee

  • Chapter
  • First Online:
Joint Preservation in the Adult Knee

Abstract

Many imaging modalities and techniques are helpful for the diagnosis and prognostication of disorders within the knee. Plain radiographs remain the first line of investigation, however, MRI now plays an increasing role for imaging the knee in the setting of joint-preservation strategies. Whilst the imaging findings for specific conditions are discussed in each chapter of this book, this chapter aims to give an overview of the imaging modalities available and to discuss in detail the use of imaging techniques for the visualisation and assessment of early osteoarthritis within the knee joint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glyn-Jones S, Palmer AJ, Agricola R et al (2015) Osteoarthritis. Lancet 386(9991):376–387

    Article  CAS  PubMed  Google Scholar 

  2. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage 15:A1–A56

    Article  PubMed  Google Scholar 

  4. Gossec L, Jordan JM, Mazzuca SA et al (2008) Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X-rays: report of the OARSI-OMERACT task force. Osteoarthritis Cartilage 16:742–748

    Article  CAS  PubMed  Google Scholar 

  5. Hunter DJ, Zhang YQ, Tu X et al (2006) Change in joint space width: hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum 54:2488–2495

    Article  CAS  PubMed  Google Scholar 

  6. Guermazi A, Niu J, Hayashi D et al (2012) Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 345, e5339

    Article  PubMed  PubMed Central  Google Scholar 

  7. Piperno M, Hellio Le Graverand MP et al (1998) Quantitative evaluation of joint space width in femorotibial osteoarthritis: comparison of three radiographic views. Osteoarthritis Cartilage 6:252–259

    Article  CAS  PubMed  Google Scholar 

  8. Roux CH, Mazieres B, Verrouil E et al (2016) Femoro-tibial knee osteoarthritis: one or two X-rays? Results from a population-based study. Joint Bone Spine 83:37–42

    Article  PubMed  Google Scholar 

  9. Le Graverand MP, Vignon EP, Brandt KD et al (2008) Head-to-head comparison of the Lyon Schuss and fixed flexion radiographic techniques. Long-term reproducibility in normal knees and sensitivity to change in osteoarthritic knees. Ann Rheum Dis 67:1562–1566

    Article  PubMed  Google Scholar 

  10. Sharma L, Chmiel JS, Almagor O et al (2013) The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis 72:235–240

    Article  PubMed  Google Scholar 

  11. Luo CF (2004) Reference axes for reconstruction of the knee. Knee 11:251–257

    Article  PubMed  Google Scholar 

  12. Felson DT, Cooke TD, Niu J et al (2009) Can anatomic alignment measured from a knee radiograph substitute for mechanical alignment from full limb films? Osteoarthritis Cartilage 17:1448–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kijowski R, Roemer F, Englund M et al (2014) Imaging following acute knee trauma. Osteoarthritis Cartilage 22:1429–1443

    Article  CAS  PubMed  Google Scholar 

  14. Brown MA, Semelka RC (1999) MR imaging abbreviations, definitions, and descriptions: a review. Radiology 213:647–662

    Article  CAS  PubMed  Google Scholar 

  15. Hartley KG, Damon BM, Paterson GT, Long JH, Holt GE (2012) MRI techniques: a review and update for the orthopaedic surgeon. J Am Acad Orthop Surg 20:775–787

    PubMed  Google Scholar 

  16. Link TM (2009) MR imaging in osteoarthritis: hardware, coils and sequences. Radiol Clin N Am 47:617–632

    Article  PubMed  Google Scholar 

  17. Regatte RR, Schweitzer ME (2007) Ultra-high-field MRI of the musculoskeletal system at 7.0T. J Mag Res Imaging 25:262–269

    Article  Google Scholar 

  18. Erly WK, Oh ES, Outwater EK (2006) The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol 27:1183–1188

    CAS  PubMed  Google Scholar 

  19. Eckstein F, Cicuttini F, Raynauld J-P, Waterton JC, Peterfy C (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 14:A46–A75

    Article  PubMed  Google Scholar 

  20. Bining J, Andrews G, Forster BB (2009) The ABCs of the anterior cruciate ligament: a primer for magnetic resonance imaging assessment of the normal, injured and surgically repaired anterior cruciate ligament. Br J Sports Med 43:856–862

    Article  CAS  PubMed  Google Scholar 

  21. Roemer FW, Felson DT, Wang K et al (2013) Co-localisation of non-cartilaginous articular pathology increases risk of cartilage loss in the tibiofemoral joint--the MOST study. Ann Rheum Dis 72:942–948

    Article  PubMed  Google Scholar 

  22. Guermazi A, Roemer FW, Haugen IK, Crema MD, Hayashi D (2013) MRI-based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev Rheumatol 9:236–251

    Article  PubMed  Google Scholar 

  23. Hunter DJ, Lo GH, Gale D et al (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston–Leeds Osteoarthritis Knee Score). Ann Rheum Dis 67:206–211

    Article  CAS  PubMed  Google Scholar 

  24. Kornatt PR, Ceulemans RYT, Kroon HM et al (2005) MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 34:95–102

    Article  Google Scholar 

  25. Hunter DJ, Guermazi A, Lo GH et al (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19:990–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12:177–190

    Article  CAS  PubMed  Google Scholar 

  27. Palmer AJ, Brown CP, McNally EG et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 95-B:738–746

    Article  CAS  PubMed  Google Scholar 

  28. Zilkens C, Miese F, Herten M et al (2013) Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study. Eur J Radiol 82:e81–e86

    Article  PubMed  Google Scholar 

  29. Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE (2008) Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum 58:1727–1730

    Article  PubMed  Google Scholar 

  30. Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW (2015) Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthritis Cartilage 23:1639–1653

    Article  CAS  PubMed  Google Scholar 

  31. Nishioka H, Hirose J, Nakamura E et al (2012) T1rho and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging 35:147–155

    Article  PubMed  Google Scholar 

  32. Prasad AP, Nardo L, Schooler J, Joseph GB, Link TM (2013) T(1)rho and T(2) relaxation times predict progression of knee osteoarthritis. Osteoarthritis Cartilage 21:69–76

    Article  CAS  PubMed  Google Scholar 

  33. Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267:503–513

    Article  PubMed  Google Scholar 

  34. Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS (2013) Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage 21:1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Tiel J, Kotek G, Reijman M et al (2014) Delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM) in patients with knee osteoarthritis: relation with meniscal degeneration on conventional MRI, reproducibility, and correlation with dGEMRIC. Eur Radiol 24:2261–2270

    Article  PubMed  Google Scholar 

  36. Rauscher I, Stahl R, Cheng J et al (2008) Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology 249:591–600

    Article  PubMed  PubMed Central  Google Scholar 

  37. van Tiel J, Siebelt M, Reijman M et al (2016) Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo reference standards. Osteoarthritis Cartilage 24:1012–1020

    Article  PubMed  Google Scholar 

  38. Hirschmann MT, Schon S, Afifi FK et al (2013) Assessment of loading history of compartments in the knee using bone SPECT/CT: a study combining alignment and 99mTc-HDP tracer uptake/distribution patterns. J Orthop Res 31:268–274

    Article  CAS  PubMed  Google Scholar 

  39. Welsch GH, Juras V, Szomolanyi P et al (2012) Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. Eur Radiol 22:1852–1859

    Article  PubMed  Google Scholar 

  40. Hovis KK, Stehling C, Souza RB et al (2011) Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum 63:2248–2256

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony J. R. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palmer, A.J.R., Glyn-Jones, S., Amiras, D. (2017). Imaging Assessment of the Knee. In: Rodríguez-Merchán , E., Liddle, A. (eds) Joint Preservation in the Adult Knee. Springer, Cham. https://doi.org/10.1007/978-3-319-41808-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41808-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41807-0

  • Online ISBN: 978-3-319-41808-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics