Skip to main content

Converse Magneto-Electric Coefficient of Composite Multiferroic Rings

  • Conference paper
  • First Online:
Mechanics of Composite and Multi-functional Materials, Volume 7

Abstract

Composite multiferroic materials for magneto-electric coupling have been investigated in the past decade as an alternative for intrinsic materials especially at room temperature. In this configuration, the magneto-electric coupling is based on the transduction of the strain between laminated piezoelectric and magnetostrictive layers. Thus, the mechanical interface plays a crucial role in the converse magneto-electric coefficient (CME). The focus of this research is to understand the dependence of CME on the bonding interface of a composite annulus with an outer axially or radially polarized piezoelectric and an inner magnetostrictive (Terfenol-D, TD) rings. The rings were epoxy-bonded in one arrangement and shrink-fitted in another. This resulted in three different sample arrangements: axially-poled PZT/epoxy/TD, axially-poled PZT/shrink/TD, and radially-poled PZT/epoxy/TD. The shrink-fit arrangement for the radially poled PZT was forfeited since the shrink-fit bonding interface under performed in axially poled configuration. The composite rings were characterized by changing the electric field from 20 to 80 kV/m, varying the frequency between 4 and 50 kHz, and the bias magnetic field between 0 and 2300 Oe. The maximum CME for epoxy-bonded rings was found to occur at lower bias magnetic field than for the shrink-fitted rings. The results show that the resonance frequency of the composite ring shifted due to change in the interface. Finally, it was found that the CME of an axially poled PZT ring arrangement is higher than a radially poled one due to saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y., Li, Z., Deng, C., Ma, J., Lin, Y., Nan, C.W.: Demonstration of magnetoelectric read head of multiferroic heterostructures. Appl. Phys. Lett. 92(15), 7–10 (2008)

    Google Scholar 

  2. Priya, S., Islam, R., Dong, S., Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19(1), 149–166 (2007)

    Article  Google Scholar 

  3. Srinivasan, G.: Magnetoelectric composites. Annu. Rev. Mater. Res. 40(1), 153–178 (2010)

    Article  Google Scholar 

  4. Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  5. Hu, J.-M., Nan, T., Sun, N.X., Chen, L.-Q.: Multiferroic magnetoelectric nanostructures for novel device applications. MRS Bull. 40(09), 728–735 (2015)

    Article  Google Scholar 

  6. Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50(9), 6082–6088 (1994)

    Article  Google Scholar 

  7. Arnaudas, J.I., De La Fuente, C., Ciria, M., Benito, L., Dufour, C., Dumesnil, K., Del Moral, A.: Magnetoelastic stresses in epitaxial (1 1 0) Terfenol-D thin films. J. Magn. Magn. Mater. 240(1–3), 389–391 (2002)

    Article  Google Scholar 

  8. Chavez, A., Lopez, M., Youssef, G.: Converse magneto-electric coefficient of concentric multiferroic composite ring. J. Appl. Phys. 119, 233905 (2016)

    Article  Google Scholar 

  9. Chang, C.-M., Carman, G.: Modeling shear lag and demagnetization effects in magneto-electric laminate composites. Phys. Rev. B 76(13), 132116 (2007)

    Article  Google Scholar 

  10. Hockel, J.L., Wu, T., Carman, G.P.: Voltage bias influence on the converse magnetoelectric effect of PZT/terfenol-D/PZT laminates. J. Appl. Phys. 109(6), 064106 (2011)

    Article  Google Scholar 

  11. Wu, T., Chang, C.M., Chung, T.K., Carman, G.: Comparison of effective direct and converse magnetoelectric effects in laminate composites. IEEE Trans. Magn. 45(10), 4333–4336 (2009)

    Article  Google Scholar 

  12. Wu, T., Chung, T.K., Chang, C.M., Keller, S., Carman, G.: Influence of electric voltage bias on converse magnetoelectric coefficient in piezofiber/Metglas bilayer laminate composites. J. Appl. Phys. 106(5), 054114 (2009)

    Article  Google Scholar 

  13. Wu, G., Zhang, R., Li, X., Zhang, N.: Resonance magnetoelectric effects in disk-ring (piezoelectric - magnetostrictive) composite structure. J. Appl. Phys. 110(12) (2011)

    Google Scholar 

  14. Dong, S., Li, J.F., Viehland, D.: Voltage gain effect in a ring-type magnetoelectric laminate. Appl. Phys. Lett. 84(21), 4188–4190 (2004)

    Article  Google Scholar 

  15. Dong, S., Bai, J.G., Zhai, J., Li, J.F., Lu, G.Q., Viehland, D., Zhang, S., Shrout, T.R.: Circumferential-mode, quasi-ring-type, magnetoelectric laminate composite-a highly sensitive electric current and/or vortex magnetic field sensor. Appl. Phys. Lett. 86(18), 182506 (2005)

    Article  Google Scholar 

  16. Leung, C.M., Or, S.W., Zhang, S., Ho, S.L.: Ring-type electric current sensor based on ring-shaped magnetoelectric laminate of epoxy-bonded Tb0.3Dy0.7Fe1.92 short-fiber/NdFeB magnet magnetostrictive composite and Pb(Zr, Ti)O3 piezoelectric ceramic. J. Appl. Phys. 107(9), 09D918 (2010)

    Google Scholar 

  17. Sandlund, L., Fahlander, M., Cedell, T., Clark, A.E., Restorff, J.B., Wun-Fogle, M.: Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D. J. Appl. Phys. 75(10), 5656–5658 (1994)

    Article  Google Scholar 

  18. Dapino, M.J., Faidley, L.E., Flatau, A.B., Smith, R.C.: A coupled structural-magnetic strain and stress model for magnetostrictive transducers. J. Intell. Mater. Syst. Struct. 11(2), 135–152 (2000)

    Article  Google Scholar 

  19. Zhang, Q.M., Zhao, J.: Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1518–1526 (1999)

    Article  Google Scholar 

  20. Aljanaideh, O., AL-Tahat, M.D., Al Janaideh, M.: Rate-bias-dependent hysteresis modeling of a magnetostrictive transducer. Microsyst. Technol. 22(4), 883–892 (2016)

    Article  Google Scholar 

  21. Ruiz De Angulo, L., Abell, J.S., Harris, I.R.: Magnetostrictive properties of polymer bonded Terfenol-D. J. Magn. Magn. Mater. 157–158, 508–509 (1996)

    Article  Google Scholar 

  22. Greenough, R.D., Wharton, A.D.: Methods and techniques to characterise Terfenol-D. Science 258, 114–117 (1997)

    Google Scholar 

  23. Masys, A.J., Ren, W., Yang, G., Mukherjee, B.K.: Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias. J. Appl. Phys. 94(2), 1155–1162 (2003)

    Article  Google Scholar 

  24. Benčan, A., Malič, B., Drnovšek, S., Tellier, J., Rojac, T., Pavlič, J., Kosec, M., Webber, K.G., Rödel, J., Damjanovic, D.: Structure and the electrical properties of Pb(Zr, Ti)O3—zirconia composites. J. Am. Ceram. Soc. 95(2), 651–657 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Science Foundation (NSF under Contract No. EEC-1160504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Youssef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Lopez, M., Youssef, G. (2017). Converse Magneto-Electric Coefficient of Composite Multiferroic Rings. In: Ralph, W., Singh, R., Tandon, G., Thakre, P., Zavattieri, P., Zhu, Y. (eds) Mechanics of Composite and Multi-functional Materials, Volume 7 . Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41766-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41766-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41765-3

  • Online ISBN: 978-3-319-41766-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics