Skip to main content

Biomarkers in the Clinic

  • Chapter
  • First Online:
Molecular Pathology of Breast Cancer
  • 1360 Accesses

Abstract

The recent years has seen massive advances in technology that has helped better understand the biology of breast cancer. This understanding has resulted in the recognition that breast cancer is not a single disease but a group of diseases. The testing of biomarkers has become integral to therapeutics of breast cancer. These decisions are based not only on the extent of disease but on the specific the type of breast cancer. Terms unheard up a decade ago (luminal and TNBC) have become part of the language. However, only a few of the biomarkers have reached to the level of clinical practice. In this chapter we discuss the current status of biomarker usage and the limitations associated with the application of novel biomarkers to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albain KS, Barlow WE, Shak S et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Antoniou AC, Casadei S, Heikkinen T et al (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371(6):497–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29(2):217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arribas J, Baselga J, Pedersen K, Parra-Palau JL (2011) p95HER2 and breast cancer. Cancer Res 71(5):1515–1519

    Article  CAS  PubMed  Google Scholar 

  • Bal O, Yalcintas Arslan U, Durnali A et al (2015) Progesterone receptor status in determining the prognosis of estrogen receptor positive/HER2 negative breast carcinoma patients. J BUON 20(1):28–34

    PubMed  Google Scholar 

  • Baselga J, Cortes J, Kim SB et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119

    Article  CAS  PubMed  Google Scholar 

  • Berns K, Horlings HM, Hennessy BT et al (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402

    Article  CAS  PubMed  Google Scholar 

  • Burstein HJ, Prestrud AA, Seidenfeld J et al (2010) American Society of Clinical Oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Clin Oncol 28(23):3784–3796

    Article  PubMed  Google Scholar 

  • Butt AJ, McNeil CM, Musgrove EA, Sutherland RL (2005) Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12(Suppl 1):S47–S59

    Article  CAS  PubMed  Google Scholar 

  • Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Cameron D, Casey M, Press M et al (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112(3):533–543

    Article  CAS  PubMed  Google Scholar 

  • Cameron D, Casey M, Oliva C, Newstat B, Imwalle B, Geyer CE (2010) Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist 15(9):924–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26(5):729–735

    Article  PubMed  Google Scholar 

  • Carnevale RP, Proietti CJ, Salatino M et al (2007) Progestin effects on breast cancer cell proliferation, proteases activation, and in vivo development of metastatic phenotype all depend on progesterone receptor capacity to activate cytoplasmic signaling pathways. Mol Endocrinol 21(6):1335–1358

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Chatterjee S, Roy P (2010) Progesterone receptor agonists and antagonists as anticancer agents. Mini Rev Med Chem 10(6):506–517

    Article  CAS  PubMed  Google Scholar 

  • Chlebowski RT, Hendrix SL, Langer RD et al (2003) Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the women’s health initiative randomized trial. JAMA 289(24):3243–3253

    Article  CAS  PubMed  Google Scholar 

  • de Azambuja E, Cardoso F, de Castro G Jr et al (2007) Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer 96(10):1504–1513

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowsett M, Cuzick J, Wale C et al (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28(11):1829–1834

    Article  PubMed  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative G (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717

    Google Scholar 

  • Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  • Fuqua SA, Gu G, Rechoum Y (2014) Estrogen receptor (ER) alpha mutations in breast cancer: hidden in plain sight. Breast Cancer Res Treat 144(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Murillas I, Schiavon G, Weigelt B et al (2015) Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Trans Med 7(302):302ra133

    Article  Google Scholar 

  • Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743

    Article  CAS  PubMed  Google Scholar 

  • Gianni L, Pienkowski T, Im YH et al (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Giuliano M, Schifp R, Osborne CK, Trivedi MV (2011) Biological mechanisms and clinical implications of endocrine resistance in breast cancer. Breast 20(Suppl 3):S42–S49

    Article  PubMed  Google Scholar 

  • Guiu S, Michiels S, Andre F et al (2012) Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 working group statement. Ann Oncol 23(12):2997–3006

    Article  CAS  PubMed  Google Scholar 

  • Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312

    Article  CAS  PubMed  Google Scholar 

  • Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481

    CAS  PubMed  Google Scholar 

  • Hilton HN, Graham JD, Kantimm S et al (2012) Progesterone and estrogen receptors segregate into different cell subpopulations in the normal human breast. Mol Cell Endocrinol 361(1–2):191–201

    Article  CAS  PubMed  Google Scholar 

  • Isakoff SJ, Mayer EL, He L et al (2015) TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol 33(17):1902–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen EV, Block GE, Smith S, Kyser K, DeSombre ER (1971) Estrogen receptors and breast cancer response to adrenalectomy. Natl Cancer Inst Monogr 34:55–70

    CAS  PubMed  Google Scholar 

  • Kern FG, McLeskey SW, Zhang L et al (1994) Transfected MCF-7 cells as a model for breast-cancer progression. Breast Cancer Res Treat 31(2–3):153–165

    Article  CAS  PubMed  Google Scholar 

  • King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717):974–976

    Article  CAS  PubMed  Google Scholar 

  • Krop IE, Kim SB, Gonzalez-Martin A et al (2014) Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol 15(7):689–699

    Article  CAS  PubMed  Google Scholar 

  • Krop IE, Lin NU, Blackwell K et al (2015) Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann Oncol 26(1):113–119

    Article  CAS  PubMed  Google Scholar 

  • Labriola L, Salatino M, Proietti CJ et al (2003) Heregulin induces transcriptional activation of the progesterone receptor by a mechanism that requires functional ErbB-2 and mitogen-activated protein kinase activation in breast cancer cells. Mol Cell Biol 23(3):1095–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanari C, Molinolo AA, Pasqualini CD (1986a) Induction of mammary adenocarcinomas by medroxyprogesterone acetate in BALB/c female mice. Cancer Lett 33(2):215–223

    Article  CAS  PubMed  Google Scholar 

  • Lanari C, Molinolo AA, Pasqualini CD (1986b) Inhibitory effect of medroxyprogesterone acetate on foreign body tumorigenesis in mice. J Natl Cancer Inst 77(1):157–164

    CAS  PubMed  Google Scholar 

  • Le Du F, Ueno NT (2015) Targeted therapies in triple-negative breast cancer: failure and future. Womens Health (Lond Engl) 11(1):1–5

    Article  Google Scholar 

  • Le Du F, Eckhardt BL, Lim B et al (2015) Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget 6(15):12890–12908

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Tourneau C, Delord J-P, Gonçalves A, Gavoille C et al (2015) Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16:1324–1334 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  • Lehmann BD, Bauer JA, Chen X et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Condie A, Bennett JD, Fry MJ, Yuille MR, Shipley J (2001) Disruption of the ATM gene in breast cancer. Cancer Genet Cytogenet 126(2):97–101

    Article  CAS  PubMed  Google Scholar 

  • Lydon JP, DeMayo FJ, Funk CR et al (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9(18):2266–2278

    Article  CAS  PubMed  Google Scholar 

  • Mamounas EP, Tang G, Fisher B et al (2010) Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28(10):1677–1683

    Article  PubMed  PubMed Central  Google Scholar 

  • McGuire WL (1973) Estrogen receptors in human breast cancer. J Clin Invest 52(1):73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michna H, Schneider MR, Nishino Y, El Etreby MF (1989) Antitumor activity of the antiprogestins ZK 98.299 and RU 38.486 in hormone dependent rat and mouse mammary tumors: mechanistic studies. Breast Cancer Res Treat 14(3):275–288

    Article  CAS  PubMed  Google Scholar 

  • Molinolo AA, Lanari C, Charreau EH, Sanjuan N, Pasqualini CD (1987) Mouse mammary tumors induced by medroxyprogesterone acetate: immunohistochemistry and hormonal receptors. J Natl Cancer Inst 79(6):1341–1350

    CAS  PubMed  Google Scholar 

  • Mook S, Schmidt MK, Weigelt B et al (2010) The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol 21(4):717–722

    Article  CAS  PubMed  Google Scholar 

  • Morgan L, Gee J, Pumford S et al (2009) Elevated Src kinase activity attenuates Tamoxifen response in vitro and is associated with poor prognosis clinically. Cancer Biol Ther 8(16):1550–1558

    Article  CAS  PubMed  Google Scholar 

  • Newman AM, Bratman SV, To J et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20(5):548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens MA, Horten BC, Da Silva MM (2004) HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 5(1):63–69

    Article  CAS  PubMed  Google Scholar 

  • Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  PubMed  Google Scholar 

  • Perez EA, Thompson EA, Ballman KV et al (2015) Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the north central cancer treatment group n9831 adjuvant trastuzumab trial. J Clin Oncol 33(7):701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353(16):1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY (2006) Prevention of BRCA1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314(5804):1467–1470

    Article  CAS  PubMed  Google Scholar 

  • Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23

    Article  CAS  PubMed  Google Scholar 

  • Proverbs-Singh T, Feldman JL, Morris MJ, Autio KA, Traina TA (2015) Targeting the androgen receptor in prostate and breast cancer: several new agents in development. Endocr Relat Cancer 22(3):R87–R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puglisi F, Piccart M (2005) Trastuzumab and breast cancer. Are we just beyond the prologue of a fascinating story? Onkologie 28(11):547–549

    PubMed  Google Scholar 

  • Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167

    Article  CAS  PubMed  Google Scholar 

  • Razis E, Bobos M, Kotoula V et al (2011) Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer. Breast Cancer Res Treat 128(2):447–456

    Article  CAS  PubMed  Google Scholar 

  • Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684

    Article  CAS  PubMed  Google Scholar 

  • Schouten PC, Linn SC (2015) Challenges in the use of DNA repair deficiency as a biomarker in breast cancer. J Clin Oncol 33(17):1867–1869

    Article  PubMed  Google Scholar 

  • Sergina NV, Rausch M, Wang D et al (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445(7126):437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra V, Markman B, Scaltriti M et al (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68(19):8022–8030

    Article  CAS  PubMed  Google Scholar 

  • Simes RJ, Coates AS (2001) Patient preferences for adjuvant chemotherapy of early breast cancer: how much benefit is needed? J Natl Cancer Inst Monogr 30:146–152

    Article  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  • Smerage JB, Barlow WE, Hortobagyi GN et al (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol 32(31):3483–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ML, White CB, Railey E, Sledge GW Jr (2014) Examining and predicting drug preferences of patients with metastatic breast cancer: using conjoint analysis to examine attributes of paclitaxel and capecitabine. Breast Cancer Res Treat 145(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Span PN, Tjan-Heijnen VC, Manders P, Beex LV, Sweep CG (2003) Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene 22(31):4898–4904

    Article  CAS  PubMed  Google Scholar 

  • Sparano JA, Gray RJ, Makower DF et al (2015) Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 21:2005–2014

    Article  Google Scholar 

  • Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart-Harris R, Caldas C, Pinder SE, Pharoah P (2008) Proliferation markers and survival in early breast cancer: a systematic review and meta-analysis of 85 studies in 32,825 patients. Breast 17(4):323–334

    Article  CAS  PubMed  Google Scholar 

  • Swain SM, Baselga J, Kim SB et al (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372(8):724–734

    Article  CAS  PubMed  Google Scholar 

  • Telli ML, Jensen KC, Vinayak S et al (2015) Phase II study of gemcitabine, carboplatin, and iniparib as neoadjuvant therapy for triple-negative and BRCA1/2 mutation-associated breast cancer with assessment of a tumor-based measure of genomic instability: PrECOG 0105. J Clin Oncol 33(17):1895–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tutt A (2014) TNT: a randomized phase III trial of carboplatin compared with docetaxel for patients with metastatic or recurrent locally advanced triple negative breast cancer or BRCA1/2 breast cancer (Abstr S3-01). In: 37th annual San Antonio breast cancer symposium, 9–13 Dec, San Antonio, TX

    Google Scholar 

  • Tutt A, Robson M, Garber JE et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–244

    Article  CAS  PubMed  Google Scholar 

  • van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Google Scholar 

  • Verma S, Miles D, Gianni L et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367(19):1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Yaziji H, Goldstein LC, Barry TS et al (2004) HER-2 testing in breast cancer using parallel tissue-based methods. JAMA 291(16):1972–1977

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Sledge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mina, L., Sledge, G.W. (2016). Biomarkers in the Clinic. In: Badve, S., Gökmen-Polar, Y. (eds) Molecular Pathology of Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-41761-5_26

Download citation

Publish with us

Policies and ethics