Skip to main content

Noncoding RNAs in Breast Cancer

  • Chapter
  • First Online:
Book cover Molecular Pathology of Breast Cancer

Abstract

Recent advances in RNA sequencing technologies have unveiled the complexity of RNA world outdating the traditional view that many noncoding RNA (ncRNA) transcripts are transcriptional noise , while the protein coding genes are important players in cancer signaling. Accumulating evidence suggests that they are not only key regulators of gene expression, but also direct targets of cancer pathways. These are mainly classified according to their size: microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being the most studied. The field has rapidly expanded and it is impossible to cover all the nuances in a single chapter. Noncoding RNAs, including miRNAs (~22 nucleotides long RNAs) and lncRNAs (>200 nucleotides), regulate gene expression at the transcriptional levels or post-transcriptionally by modulating the function of transcription factors, directing chromatin reorganization and modification, or by inhibiting the translation or stability of messenger RNA (mRNA). Here, we provide an overview of the role of ncRNAs in breast cancer and their prognostic and predictive potential in the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

lncRNA:

Noncoding RNA

lncRNA:

Long noncoding RNA

miRNA:

MicroRNA

References

  • Adriaenssens E, Dumont L, Lottin S, Bolle D, Lepretre A, Delobelle A, Bouali F, Dugimont T, Coll J, Curgy JJ (1998) H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol 153(5):1597–1607. doi:10.1016/S0002-9440(10)65748-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W, Sarkar FH, Raz A (2011) Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 71(9):3400–3409. doi:10.1158/0008-5472.CAN-10-0965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2(2):101–112. doi:10.1038/nrc721

    Google Scholar 

  • Appaiah HN, Goswami CP, Mina LA, Badve S, Sledge GW Jr, Liu Y, Nakshatri H (2011) Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res 13(5):R86. doi:10.1186/bcr2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, Ru K, Mercer TR, Thompson ER, Lakhani SR, Vargas AC, Campbell IG, Brown MA, Dinger ME, Mattick JS (2011) SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17(5):878–891. doi:10.1261/rna.2528811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askarian-Amiri ME, Seyfoddin V, Smart CE, Wang J, Kim JE, Hansji H, Baguley BC, Finlay GJ, Leung EY (2014) Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer. PLoS ONE 9(7):e102140. doi:10.1371/journal.pone.0102140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bader AG, Brown D, Stoudemire J, Lammers P (2011) Developing therapeutic microRNAs for cancer. Gene Ther 18(12):1121–1126. doi:10.1038/gt.2011.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader AG (2012) miR-34-a microRNA replacement therapy is headed to the clinic. Front Genet 3:120. doi:10.3389/fgene.2012.00120. eCollection

  • Baffa R, Fassan M, Volinia S, O’Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221. doi:10.1002/path.2586

    Article  CAS  PubMed  Google Scholar 

  • Bak RO, Mikkelsen JG (2014) miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdiscip Rev RNA 5(3):317–333. doi:10.1002/wrna.1213

    Article  CAS  PubMed  Google Scholar 

  • Banfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE Jr, Kundaje A, Gunawardena HP, Yu Y, Xie L, Krajewski K, Strahl BD, Chen X, Bickel P, Giddings MC, Brown JB, Lipovich L (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22(9):1646–1657. doi:10.1101/gr.134767.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel B (2005) MicroRNas directing siRNA biogenesis. Nat Struct Mol Biol 12(7):569–571. doi:10.1038/nsmb0705-569

    Article  CAS  PubMed  Google Scholar 

  • Begley U, Sosa MS, Avivar-Valderas A, Patil A, Endres L, Estrada Y, Chan CT, Su D, Dedon PC, Aguirre-Ghiso JA, Begley T (2013) A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-alpha. EMBO Mol Med 5(3):366–383. doi:10.1002/emmm.201201161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berezikov E, Plasterk RH (2005) Camels and zebrafish, viruses and cancer: a microRNA update. Hum Mol Genet 14(Spec No 2):R183–190. doi:10.1093/hmg/ddi271

    Google Scholar 

  • Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5(10):1122–1143. doi:10.7150/thno.11543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney E (2007) Evolutionary genomics: come fly with us. Nature 450(7167):184–185. doi:10.1038/450184a

    Article  CAS  PubMed  Google Scholar 

  • Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavare S, Caldas C, Miska EA (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214. doi:10.1186/gb-2007-8-10-r214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bockhorn J, Dalton R, Nwachukwu C, Huang S, Prat A, Yee K, Chang YF, Huo D, Wen Y, Swanson KE, Qiu T, Lu J, Park SY, Dolan ME, Perou CM, Olopade OI, Clarke MF, Greene GL, Liu H (2013) MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun 4:1393. doi:10.1038/ncomms2393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunner AL, Beck AH, Edris B, Sweeney RT, Zhu SX, Li R, Montgomery K, Varma S, Gilks T, Guo X, Foley JW, Witten DM, Giacomini CP, Flynn RA, Pollack JR, Tibshirani R, Chang HY, van de Rijn M, West RB (2012) Transcriptional profiling of lncRNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol 13(8):R75. doi:10.1186/gb-2012-13-8-r75

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927. doi:10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563. doi:10.1126/science.1112014

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41(Database issue):D983–986. doi:10.1093/nar/gks1099

    Google Scholar 

  • Chen L, Bourguignon LY (2014) Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells. Mol Cancer 13:52. doi:10.1186/1476-4598-13-52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Bocker W, Brosius J, Tiedge H (1997) Expression of neural BC200 RNA in human tumours. J Pathol 183(3):345–351. doi:10.1002/(SICI)1096-9896(199711)183:3<345::AID-PATH930>3.0.CO;2-8 [pii]

  • Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, Chao JI, Liu HF, Ding SL, Shen CY (2012) MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat 134(3):1081–1093. doi:10.1007/s10549-012-2034-4

    Article  CAS  PubMed  Google Scholar 

  • Chisholm KM, Wan Y, Li R, Montgomery KD, Chang HY, West RB (2012) Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS ONE 7(10):e47998. doi:10.1371/journal.pone.0047998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MB, Choudhary A, Smith MA, Taft RJ, Mattick JS (2013) The dark matter rises: the expanding world of regulatory RNAs. Essays Biochem 54:1–16. doi:10.1042/bse0540001

    Article  CAS  PubMed  Google Scholar 

  • Climent J, Dimitrow P, Fridlyand J, Palacios J, Siebert R, Albertson DG, Gray JW, Pinkel D, Lluch A, Martinez-Climent JA (2007) Deletion of chromosome 11q predicts response to anthracycline-based chemotherapy in early breast cancer. Cancer Res 67(2):818–826. doi:10.1158/0008-5472.CAN-06-3307

    Article  CAS  PubMed  Google Scholar 

  • Colley SM, Leedman PJ (2011) Steroid Receptor RNA activator—a nuclear receptor coregulator with multiple partners: insights and challenges. Biochimie 93(11):1966–1972. doi:10.1016/j.biochi.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  • Corcoran C, Friel AM, Duffy MJ, Crown J, O’Driscoll L (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57(1):18–32. doi:10.1373/clinchem.2010.150730

    Article  CAS  PubMed  Google Scholar 

  • de Rinaldis E, Gazinska P, Mera A, Modrusan Z, Fedorowicz GM, Burford B, Gillett C, Marra P, Grigoriadis A, Dornan D, Holmberg L, Pinder S, Tutt A (2013) Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control. BMC Genom 14:643. doi:10.1186/1471-2164-14-643

    Article  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. doi:10.1101/gr.132159.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. doi:10.1038/nature11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou W, Dong JT (2009) Implication of snoRNA U50 in human breast cancer. J Genet Genomics 36(8):447–454. doi:10.1016/S1673-8527(08)60134-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132(21):4645–4652. doi:10.1242/dev.02070

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y, Liu XS (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20(7):908–913. doi:10.1038/nsmb.2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A, Zhao Y, Hirst M, Armisen J, Miska EA, Chin SF, Provenzano E, Turashvili G, Green A, Ellis I, Aparicio S, Caldas C (2013) The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497(7449):378–382. doi:10.1038/nature12108

    Article  CAS  PubMed  Google Scholar 

  • Egeland NG, Lunde S, Jonsdottir K, Lende TH, Cronin-Fenton D, Gilje B, Janssen EA, Soiland H (2015) The role of MicroRNAs as predictors of response to tamoxifen treatment in breast cancer patients. Int J Mol Sci 16(10):24243–24275. doi:10.3390/ijms161024243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, Ng S, Lin L, Crowder R, Snider J, Ballman K, Weber J, Chen K, Koboldt DC, Kandoth C, Schierding WS, McMichael JF, Miller CA, Lu C, Harris CC, McLellan MD, Wendl MC, DeSchryver K, Allred DC, Esserman L, Unzeitig G, Margenthaler J, Babiera GV, Marcom PK, Guenther JM, Leitch M, Hunt K, Olson J, Tao Y, Maher CA, Fulton LL, Fulton RS, Harrison M, Oberkfell B, Du F, Demeter R, Vickery TL, Elhammali A, Piwnica-Worms H, McDonald S, Watson M, Dooling DJ, Ota D, Chang LW, Bose R, Ley TJ, Piwnica-Worms D, Stuart JM, Wilson RK, Mardis ER (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486(7403):353–360. doi:10.1038/nature11143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galasso M, Sana ME, Volinia S (2010) Non-coding RNAs: a key to future personalized molecular therapy? Genome Med 2(2):12. doi:10.1186/gm133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan R, Yang Y, Yang X, Zhao L, Lu J, Meng QH (2014) Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther 21(7):290–296. doi:10.1038/cgt.2014.29

    Article  CAS  PubMed  Google Scholar 

  • Ganesan S, Silver DP, Drapkin R, Greenberg R, Feunteun J, Livingston DM (2004) Association of BRCA1 with the inactive X chromosome and XIST RNA. Philos Trans R Soc Lond B Biol Sci 359(1441):123–128. doi:10.1098/rstb.2003.1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A, Mok SC, Randrianarison V, Brodie S, Salstrom J, Rasmussen TP, Klimke A, Marrese C, Marahrens Y, Deng CX, Feunteun J, Livingston DM (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111(3):393–405

    Article  CAS  PubMed  Google Scholar 

  • Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, Patil M, Sheldon H, Betts G, Homer J, West C, Ragoussis J, Harris AL (2011) The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer 104(7):1168–1177. doi:10.1038/sj.bjc.6606076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108. doi:10.1038/nrg2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginger MR, Gonzalez-Rimbau MF, Gay JP, Rosen JM (2001) Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol 15(11):1993–2009. doi:10.1210/mend.15.11.0724

    Article  CAS  PubMed  Google Scholar 

  • Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, Rosen JM (2006) A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci U S A 103(15):5781–5786. doi:10.1073/pnas.0600745103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giricz O, Reynolds PA, Ramnauth A, Liu C, Wang T, Stead L, Childs G, Rohan T, Shapiro N, Fineberg S, Kenny PA, Loudig O (2012) Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity. J Pathol 226(1):108–119. doi:10.1002/path.2978

    Article  CAS  PubMed  Google Scholar 

  • Godinho MF, Sieuwerts AM, Look MP, Meijer D, Foekens JA, Dorssers LC, van Agthoven T (2010) Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer. Br J Cancer 103(8):1284–1291. doi:10.1038/sj.bjc.6605884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho MF, Wulfkuhle JD, Look MP, Sieuwerts AM, Sleijfer S, Foekens JA, Petricoin EF 3rd, Dorssers LC, van Agthoven T (2012) BCAR4 induces antioestrogen resistance but sensitises breast cancer to lapatinib. Br J Cancer 107(6):947–955. doi:10.1038/bjc.2012.351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh JN, Loo SY, Datta A, Siveen KS, Yap WN, Cai W, Shin EM, Wang C, Kim JE, Chan M, Dharmarajan AM, Lee AS, Lobie PE, Yap CT, Kumar AP (2015) microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer. Biol Rev Camb Philos Soc. doi:10.1111/brv.12176

    PubMed  Google Scholar 

  • Gokmen-Polar Y, Vladislav IT, Neelamraju Y, Janga SC, Badve S (2015) Prognostic impact of HOTAIR expression is restricted to ER-negative breast cancers. Sci Rep 5:8765. doi:10.1038/srep08765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grelier G, Voirin N, Ay AS, Cox DG, Chabaud S, Treilleux I, Leon-Goddard S, Rimokh R, Mikaelian I, Venoux C, Puisieux A, Lasset C, Moyret-Lalle C (2009) Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 101(4):673–683. doi:10.1038/sj.bjc.6605193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzybowska-Szatkowska L, Slaska B (2012) Polymorphisms in genes encoding mt-tRNA in female breast cancer in Poland. Mitochondrial DNA 23(2):106–111. doi:10.3109/19401736.2012.660925

    Article  CAS  PubMed  Google Scholar 

  • Guffanti A, Iacono M, Pelucchi P, Kim N, Solda G, Croft LJ, Taft RJ, Rizzi E, Askarian-Amiri M, Bonnal RJ, Callari M, Mignone F, Pesole G, Bertalot G, Bernardi LR, Albertini A, Lee C, Mattick JS, Zucchi I, De Bellis G (2009) A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genom 10:163. doi:10.1186/1471-2164-10-163

    Article  CAS  Google Scholar 

  • Gumireddy K, Li A, Yan J, Setoyama T, Johannes GJ, Orom UA, Tchou J, Liu Q, Zhang L, Speicher DW, Calin GA, Huang Q (2013) Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J 32(20):2672–2684. doi:10.1038/emboj.2013.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Gao L, Wang Y, Chiu DK, Wang T, Deng Y (2016) Advances in long noncoding RNAs: identification, structure prediction and function annotation. Brief Funct Genomics 15(1):38–46. doi:10.1093/bfgp/elv022

    PubMed  Google Scholar 

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076. doi:10.1038/nature08975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutschner T, Diederichs S (2012a) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6)

    Google Scholar 

  • Gutschner T, Diederichs S (2012b) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719. doi:10.4161/rna.20481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutschner T, Hammerle M, Diederichs S (2013) MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl) 91(7):791–801. doi:10.1007/s00109-013-1028-y

    Article  CAS  Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346. doi:10.1038/nature10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154(1):240–251. doi:10.1016/j.cell.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  • Hall LL, Smith KP, Byron M, Lawrence JB (2006) Molecular anatomy of a speckle. Anat Rec A Discov Mol Cell Evol Biol 288(7):664–675. doi:10.1002/ar.a.20336

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansji H, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME (2014) Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer. Front Genet 5:379. doi:10.3389/fgene.2014.00379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayes EL, Lewis-Wambi JS (2015) Mechanisms of endocrine resistance in breast cancer: an overview of the proposed roles of noncoding RNA. Breast Cancer Res 17:40. doi:10.1186/s13058-015-0542-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He YJ, Wu JZ, Ji MH, Ma T, Qiao EQ, Ma R, Tang JH (2013) miR-342 is associated with estrogen receptor-alpha expression and response to tamoxifen in breast cancer. Exp Ther Med 5(3):813–818. doi:10.3892/etm.2013.915

    PubMed  PubMed Central  Google Scholar 

  • Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13(11):971–983. doi:10.1038/embor.2012.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M, Mo YY (2014) Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 5:e1008. doi:10.1038/cddis.2013.541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iacoangeli A, Lin Y, Morley EJ, Muslimov IA, Bianchi R, Reilly J, Weedon J, Diallo R, Bocker W, Tiedge H (2004) BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis 25(11):2125–2133. doi:10.1093/carcin/bgh228

    Article  CAS  PubMed  Google Scholar 

  • Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147(4):789–802. doi:10.1016/j.cell.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizu H, Siomi H, Siomi MC (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26(21):2361–2373. doi:10.1101/gad.203786.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208. doi:10.1038/ng.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Muller-Tidow C (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041. doi:10.1038/sj.onc.1206928

    Article  PubMed  CAS  Google Scholar 

  • Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16(8):1478–1487. doi:10.1261/rna.1951310 [pii]

  • Jin C, Yan B, Lu Q, Lin Y, Ma L (2015) Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biol. doi:10.1007/s13277-015-4605-6

    Google Scholar 

  • Johnsson P, Lipovich L, Grander D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840(3):1063–71. doi:10.1016/j.bbagen.2013.10.035

    Google Scholar 

  • Jung EJ, Santarpia L, Kim J, Esteva FJ, Moretti E, Buzdar AU, Di Leo A, Le XF, Bast RC Jr, Park ST, Pusztai L, Calin GA (2012) Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 118(10):2603–2614. doi:10.1002/cncr.26565

    Article  CAS  PubMed  Google Scholar 

  • Karahan G, Sayar N, Gozum G, Bozkurt B, Konu O, Yulug IG (2015) Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer. Oncol Rep 33(6):3131–3145. doi:10.3892/or.2015.3940

    PubMed  Google Scholar 

  • Kato M, Paranjape T, Muller RU, Nallur S, Gillespie E, Keane K, Esquela-Kerscher A, Weidhaas JB, Slack FJ (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28(25):2419–2424. doi:10.1038/onc.2009.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoshnaw SM, Rakha EA, Abdel-Fatah T, Nolan CC, Hodi Z, Macmillan RD, Ellis IO, Green AR (2013) The microRNA maturation regulator Drosha is an independent predictor of outcome in breast cancer patients. Breast Cancer Res Treat 137(1):139–153. doi:10.1007/s10549-012-2358-0

    Article  CAS  PubMed  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. doi:10.1038/nrm2632

    Article  CAS  PubMed  Google Scholar 

  • Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8. doi:10.1126/scisignal.2000568. 3/107/ra8 [pii]

    Google Scholar 

  • Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71(20):6320–6326. doi:10.1158/0008-5472.CAN-11-1021

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AV, Kiefmann M, Ebnet K, Khanam T, Muddashetty RS, Brosius J (2005) Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol 353(1):88–103. doi:10.1016/j.jmb.2005.07.049

    Article  CAS  PubMed  Google Scholar 

  • Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY, Cheng JQ (2014) Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33(6):679–689. doi:10.1038/onc.2012.636

    Article  CAS  PubMed  Google Scholar 

  • Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669. doi:10.1534/genetics.112.146704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurisu T, Tanaka T, Ishii J, Matsumura K, Sugimura K, Nakatani T, Kawashima H (2006) Expression and function of human steroid receptor RNA activator in prostate cancer cells: role of endogenous hSRA protein in androgen receptor-mediated transcription. Prostate Cancer Prostatic Dis 9(2):173–178. doi:10.1038/sj.pcan.4500867

    Article  CAS  PubMed  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4(8):605–612. doi:10.1038/nrm1172

    Article  CAS  PubMed  Google Scholar 

  • Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Leaderer D, Hoffman AE, Zheng T, Fu A, Weidhaas J, Paranjape T, Zhu Y (2011) Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int J Mol Epidemiol Genet 2(1):9–18

    CAS  PubMed  Google Scholar 

  • Lee JA, Lee HY, Lee ES, Kim I, Bae JW (2011) Prognostic Implications of MicroRNA-21 Overexpression in Invasive Ductal Carcinomas of the Breast. J Breast Cancer 14(4):269–275. doi:10.4048/jbc.2011.14.4.269

    Article  PubMed  PubMed Central  Google Scholar 

  • Leivonen SK, Sahlberg KK, Makela R, Due EU, Kallioniemi O, Borresen-Dale AL, Perala M (2014) High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol 8(1):93–104. doi:10.1016/j.molonc.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  • Lerebours F, Cizeron-Clairac G, Susini A, Vacher S, Mouret-Fourme E, Belichard C, Brain E, Alberini JL, Spyratos F, Lidereau R, Bieche I (2013) miRNA expression profiling of inflammatory breast cancer identifies a 5-miRNA signature predictive of breast tumor aggressiveness. Int J Cancer 133(7):1614–1623. doi:10.1002/ijc.28171

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ma X, Li M, Zhang B, Huang J, Liu L, Wei Y (2014) Prognostic role of microRNA-210 in various carcinomas: a systematic review and meta-analysis. Dis Markers 2014:106197. doi:10.1155/2014/106197

    PubMed  PubMed Central  Google Scholar 

  • Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, Skogerbo G, Wu Z, Zhao Y (2011) Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res 39(9):3864–3878. doi:10.1093/nar/gkq1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, Dugimont T, Curgy JJ (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 23(11):1885–1895

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Li GZ, Wu ZS, Meng G (2014) Prognostic significance of let-7b expression in breast cancer and correlation to its target gene of BSG expression. Med Oncol 31(1):773. doi:10.1007/s12032-013-0773-7

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Yousef GM, Stathopoulos E, Georgoulias V, Lianidou E (2014) Prognostic significance of metastasis-related microRNAs in early breast cancer patients with a long follow-up. Clin Chem 60(1):197–205. doi:10.1373/clinchem.2013.210542

    Article  CAS  PubMed  Google Scholar 

  • Masri S, Liu Z, Phung S, Wang E, Yuan YC, Chen S (2010) The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Res Treat 124(1):89–99. doi:10.1007/s10549-009-0716-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17(5):639–647. doi:10.1016/j.devcel.2009.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2(11):986–991. doi:10.1093/embo-reports/kve230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210(Pt 9):1526–1547. doi:10.1242/jeb.005017

    Article  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14(Spec No 1):R121–132. doi:10.1093/hmg/ddi101

    Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1):R17–29. doi:10.1093/hmg/ddl046

    Google Scholar 

  • Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22(1):5–7. doi:10.1038/nsmb.2942

    Article  CAS  PubMed  Google Scholar 

  • Mei M, Ren Y, Zhou X, Yuan XB, Han L, Wang GX, Jia Z, Pu PY, Kang CS, Yao Z (2010) Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat 9(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Meijer D, van Agthoven T, Bosma PT, Nooter K, Dorssers LC (2006) Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Mol Cancer Res 4(6):379–386. doi:10.1158/1541-7786.MCR-05-0156

    Article  CAS  PubMed  Google Scholar 

  • Meng XL, Meng H, Zhang W, Qin YH, Zhao NM (2015) The role of mitochondrial tRNA variants in female breast cancer. Mitochondrial DNA 1–3. doi:10.3109/19401736.2015.1007332

    Google Scholar 

  • Misteli T (2000) Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci 113(Pt 11):1841–1849

    CAS  PubMed  Google Scholar 

  • Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28(2):195–208. doi:10.1038/onc.2008.373

    Article  CAS  PubMed  Google Scholar 

  • Mulrane L, Madden SF, Brennan DJ, Gremel G, McGee SF, McNally S, Martin F, Crown JP, Jirstrom K, Higgins DG, Gallagher WM, O’Connor DP (2012) miR-187 is an independent prognostic factor in breast cancer and confers increased invasive potential in vitro. Clin Cancer Res 18(24):6702–6713. doi:10.1158/1078-0432.CCR-12-1420

    Article  CAS  PubMed  Google Scholar 

  • Muluhngwi P, Klinge CM (2015) Roles for miRNAs in endocrine resistance in breast cancer. Endocr Relat Cancer 22(5):R279–300. doi:10.1530/ERC-15-0355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy FV, Ramakrishnan V, Malkiewicz A, Agris PF (2004) The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat Struct Mol Biol 11(12):1186–1191. doi:10.1038/nsmb861

    Google Scholar 

  • Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, Nishida T, Bamba T, Kanda T, Ajioka Y, Taguchi T, Okahara S, Takahashi H, Nishida Y, Hosokawa M, Hasegawa T, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72(5):1126–1136. doi:10.1158/0008-5472.CAN-11-1803

    Article  CAS  PubMed  Google Scholar 

  • O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12(2):201. doi:10.1186/bcr2484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58. doi:10.1016/j.cell.2010.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osato N, Suzuki Y, Ikeo K, Gojobori T (2007) Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics 176(2):1299–1306. doi:10.1534/genetics.106.069484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247. doi:10.1146/annurev-med-070909-182917

    Google Scholar 

  • Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T (2009) tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37(21):7268–7280. doi:10.1093/nar/gkp787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1(5):391–407. doi:10.1158/2159-8290.CD-11-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesne JL, Jones J, Warren J, Dawson SJ, Ali HR, Bardwell H, Blows F, Pharoah P, Caldas C (2012) Biological and prognostic associations of miR-205 and let-7b in breast cancer revealed by in situ hybridization analysis of micro-RNA expression in arrays of archival tumour tissue. J Pathol 227(3):306–314. doi:10.1002/path.3983

    Article  CAS  PubMed  Google Scholar 

  • Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, Burow ME, Ivan M, Croce CM, Nephew KP (2011) MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 30(9):1082–1097. doi:10.1038/onc.2010.487

    Article  CAS  PubMed  Google Scholar 

  • Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2):121–132. doi:10.1016/j.ccr.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott MS, Ono M (2011) From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie 93(11):1987–1992. doi:10.1016/j.biochi.2011.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serviss JT, Johnsson P, Grander D (2014) An emerging role for long non-coding RNAs in cancer metastasis. Front Genet 5:234. doi:10.3389/fgene.2014.00234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen L, Li J, Xu L, Ma J, Li H, Xiao X, Zhao J, Fang L (2012) miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med 3(3):475–480. doi:10.3892/etm.2011.428

    CAS  PubMed  Google Scholar 

  • Shibahara Y, Miki Y, Onodera Y, Hata S, Chan MS, Yiu CC, Loo TY, Nakamura Y, Akahira J, Ishida T, Abe K, Hirakawa H, Chow LW, Suzuki T, Ouchi N, Sasano H (2012) Aromatase inhibitor treatment of breast cancer cells increases the expression of let-7f, a microRNA targeting CYP19A1. J Pathol 227(3):357–366. doi:10.1002/path.4019

    Article  CAS  PubMed  Google Scholar 

  • Shore AN, Kabotyanski EB, Roarty K, Smith MA, Zhang Y, Creighton CJ, Dinger ME, Rosen JM (2012) Pregnancy-induced noncoding RNA (PINC) associates with polycomb repressive complex 2 and regulates mammary epithelial differentiation. PLoS Genet 8(7):e1002840. doi:10.1371/journal.pgen.1002840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803. doi:10.1038/sj.onc.1210083

    Article  CAS  PubMed  Google Scholar 

  • Silva JM, Boczek NJ, Berres MW, Ma X, Smith DI (2011) LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol 8(3):496–505

    Article  CAS  PubMed  Google Scholar 

  • Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258. doi:10.1038/nrm3089

    Article  CAS  PubMed  Google Scholar 

  • Song CG, Wu XY, Fu FM, Han ZH, Wang C, Shao ZM (2012) Correlation of miR-155 on formalin-fixed paraffin embedded tissues with invasiveness and prognosis of breast cancer. Zhonghua Wai Ke Za Zhi 50(11):1011–1014

    PubMed  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6(2):127–138. doi:10.1038/nrm1568

    Article  CAS  PubMed  Google Scholar 

  • Spector DL (2006) SnapShot: cellular bodies. Cell 127(5):1071. doi:10.1016/j.cell.2006.11.026

    Article  PubMed  Google Scholar 

  • Su H, Xu T, Ganapathy S, Shadfan M, Long M, Huang TH, Thompson I, Yuan ZM (2014) Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 33(11):1348–1358. doi:10.1038/onc.2013.89

    Article  CAS  PubMed  Google Scholar 

  • Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, Califano A (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147(2):370–381. doi:10.1016/j.cell.2011.09.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Jeon S, Lee KM, Han S, Song M, Choi JY, Park SK, Yoo KY, Noh DY, Ahn SH, Kang D (2012) Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival. BMC Cancer 12:195. doi:10.1186/1471-2407-12-195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139. doi:10.1002/path.2638

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Ahmad A, Sarkar FH (2012) The role of microRNAs in breast cancer migration, invasion and metastasis. Int J Mol Sci 13(10):13414–13437. doi:10.3390/ijms131013414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938. doi:10.1016/j.molcel.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693. doi:10.1126/science.1192002 [pii]

  • Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ (2010) Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer 103(4):532–541. doi:10.1038/sj.bjc.6605787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E, Simonis M (2014) Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol 15(1):R6. doi:10.1186/gb-2014-15-1-r6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21. doi:10.1186/s13058-015-0526-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vincent-Salomon A, Ganem-Elbaz C, Manie E, Raynal V, Sastre-Garau X, Stoppa-Lyonnet D, Stern MH, Heard E (2007) X inactive-specific transcript RNA coating and genetic instability of the X chromosome in BRCA1 breast tumors. Cancer Res 67(11):5134–5140. doi:10.1158/0008-5472.CAN-07-0465

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM (2012) Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci U S A 109(8):3024–3029. doi:10.1073/pnas.1200010109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Li X, Xie X, Zhao L, Chen W (2008) UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 582(13):1919–1927. doi:10.1016/j.febslet.2008.05.012

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhao J, Shi M, Ding Y, Sun H, Yuan F, Zou Z (2014) Elevated expression of miR-210 predicts poor survival of cancer patients: a systematic review and meta-analysis. PLoS ONE 9(2):e89223. doi:10.1371/journal.pone.0089223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. doi:10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Li H, Wang J, Wang D (2013) Expression of microRNA-497 and its prognostic significance in human breast cancer. Diagn Pathol 8:172. doi:10.1186/1746-1596-8-172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin O (2013) Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 32(9):1173–1182. doi:10.1038/onc.2012.128

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, Li H, Zhu X, Yao L, Zhang J (2014) Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 147(2):423–431. doi:10.1007/s10549-014-3037-0

    Article  CAS  PubMed  Google Scholar 

  • Wright MW (2014) A short guide to long non-coding RNA gene nomenclature. Hum Genomics 8:7. doi:10.1186/1479-7364-8-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Somlo G, Yu Y, Palomares MR, Li AX, Zhou W, Chow A, Yen Y, Rossi JJ, Gao H, Wang J, Yuan YC, Frankel P, Li S, Ashing-Giwa KT, Sun G, Wang Y, Smith R, Robinson K, Ren X, Wang SE (2012) De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J Transl Med 10:42. doi:10.1186/1479-5876-10-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu MD, Qi P, Weng WW, Shen XH, Ni SJ, Dong L, Huang D, Tan C, Sheng WQ, Zhou XY, Du X (2014) Long non-coding RNA LSINCT5 predicts negative prognosis and exhibits oncogenic activity in gastric cancer. Medicine (Baltimore) 93(28):e303. doi:10.1097/MD.0000000000000303

    Article  CAS  Google Scholar 

  • Yan X, Hu Z, Feng Y, Hu X, Yuan J, Zhao SD, Zhang Y, Yang L, Shan W, He Q, Fan L, Kandalaft LE, Tanyi JL, Li C, Yuan CX, Zhang D, Yuan H, Hua K, Lu Y, Katsaros D, Huang Q, Montone K, Fan Y, Coukos G, Boyd J, Sood AK, Rebbeck T, Mills GB, Dang CV, Zhang L (2015) Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers. Cancer Cell 28(4):529–540. doi:10.1016/j.ccell.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Froberg JE, Lee JT (2014) Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci 39(1):35–43. doi:10.1016/j.tibs.2013.10.002

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, Zheng SS (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18(5):1243–1250. doi:10.1245/s10434-011-1581-y

    Article  PubMed  Google Scholar 

  • Yarian C, Townsend H, Czestkowski W, Sochacka E, Malkiewicz AJ, Guenther R, Miskiewicz A, Agris PF (2002) Accurate translation of the genetic code depends on tRNA modified nucleosides. J Biol Chem 277(19):16391–16395. doi:10.1074/jbc.M200253200

    Article  CAS  PubMed  Google Scholar 

  • Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, Colnot S, Godard C, Terris B, Jammes H, Dandolo L (2008) The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A 105(34):12417–12422. doi:10.1073/pnas.0801540105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309(5740):1519–1524. doi:10.1126/science.1111444

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Wang X, Huo Q, Sun M, Cai C, Liu Z, Hu G, Yang Q (2014a) MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene 33(24):3119–3128. doi:10.1038/onc.2013.286

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang L, Rodriguez-Aguayo C, Yuan Y, Debeb BG, Chen D, Sun Y, You MJ, Liu Y, Dean DC, Woodward WA, Liang H, Yang X, Lopez-Berestein G, Sood AK, Hu Y, Ang KK, Chen J, Ma L (2014b) miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun 5:5671. doi:10.1038/ncomms6671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086. doi:10.1074/jbc.M806041200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O, Riker AI, Tan M (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 285(28):21496–21507. doi:10.1074/jbc.M109.083337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Marian C, Makambi KH, Kosti O, Kallakury BV, Loffredo CA, Zheng YL (2012) MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PLoS ONE 7(6):e39011. doi:10.1371/journal.pone.0039011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yesim Gökmen-Polar or Sunil Badve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gökmen-Polar, Y., Badve, S. (2016). Noncoding RNAs in Breast Cancer. In: Badve, S., Gökmen-Polar, Y. (eds) Molecular Pathology of Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-41761-5_22

Download citation

Publish with us

Policies and ethics