Skip to main content

Genomic Markers in ER-Negative Breast Cancer

  • Chapter
  • First Online:
Molecular Pathology of Breast Cancer
  • 1356 Accesses

Abstract

In this chapter, we will cover the role and value of genomic markers in the ER-negative subset of breast cancer. Such genomic markers encompass several different types of molecular alterations. The markers may represent proteins that can be detected by immunohistochemistry, as for example the progesterone receptor (PR), the androgen receptor (AR), or HER2. Other types of genomic markers included in this overview are markers based on gene expression data obtained from profiling breast tumor mRNA or small RNAs, as well as respective genomic tests based on such expression profiles. Furthermore, mutations in cancer genes, either hereditary or somatic, will also be covered in this chapter because of their potential prognostic and predictive value. Those mutations may represent single altered genes or mutational patterns or structural variations that have been identified through recent whole genome sequencing efforts. Regarding the value of genomic markers in ER-negative breast cancer, we distinguish between risk factors for cancer susceptibility on the one hand, and factors with prognostic or predictive value on the other. Finally, we discuss the important but complex role that immune infiltration may have in ER-negative breast cancer . What we do not cover however, are standard clinicopathologic factors, such as histopathological grading or age, which undoubtedly also have an important prognostic role in addition to the genomic markers discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltomaa S, Lipponen P, Eskelinen M et al (1992) Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer 28A(4–5):859–864

    Article  CAS  PubMed  Google Scholar 

  • Abkevich V, Timms KM, Hennessy BT et al (2012) Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer 107(10):1776–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams S, Gray RJ, Demaria S et al (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 32(27):2959–2966

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal D, Hatzis C, Pusztai L (2015) Functional polymorphisms in cancer. Oncoscience 2(2):73–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexe G, Dalgin GS, Scanfeld D et al (2007) High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res 67(22):10669–10676

    Article  CAS  PubMed  Google Scholar 

  • Anestis A, Karamouzis MV, Dalagiorgou G, Papavassiliou AG (2015) Is androgen receptor targeting an emerging treatment strategy for triple negative breast cancer? Cancer Treat Rev 41(6):547–553

    Article  CAS  PubMed  Google Scholar 

  • Aparicio S, Caldas C (2013) The implications of clonal genome evolution for cancer medicine. N Engl J Med 368(9):842–851

    Article  CAS  PubMed  Google Scholar 

  • Balko JM, Giltnane JM, Wang K et al (2014) Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov 4(2):232–245

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  CAS  PubMed  Google Scholar 

  • Banerji S, Cibulskis K, Rangel-Escareno C et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedard PL, Hansen AR, Ratain MJ, Siu LL (2013) Tumour heterogeneity in the clinic. Nature 501(7467):355–364

    Article  CAS  PubMed  Google Scholar 

  • Bianchini G, Iwamoto T, Qi Y et al (2010a) Prognostic and therapeutic implications of distinct kinase expression patterns in different subtypes of breast cancer. Cancer Res 70(21):8852–8862

    Article  CAS  PubMed  Google Scholar 

  • Bianchini G, Qi Y, Alvarez RH et al (2010b) Molecular anatomy of breast cancer stroma and its prognostic value in estrogen receptor-positive and -negative cancers. J Clin Oncol 28(28):4316–4323

    Article  PubMed  Google Scholar 

  • Birkbak NJ, Wang ZC, Kim JY et al (2012) Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2(4):366–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose R, Kavuri SM, Searleman AC et al (2013) Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 3(2):224–237

    Article  CAS  PubMed  Google Scholar 

  • Bozic I, Antal T, Ohtsuki H et al (2010) Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci U S A 107(43):18545–18550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brys M (2000) Androgens and androgen receptor: do they play a role in breast cancer? Med Sci Monit 6(2):433–438

    CAS  PubMed  Google Scholar 

  • Burstein MD, Tsimelzon A, Poage GM et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698

    Article  CAS  PubMed  Google Scholar 

  • Byrski T, Dent R, Blecharz P et al (2012) Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res 14(4):R110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  • Cescon DW, Bedard PL (2015) PIK3CA genotype and treatment decisions in human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 33(12):1318–1321

    Article  CAS  PubMed  Google Scholar 

  • Chung CC, Chanock SJ (2011) Current status of genome-wide association studies in cancer. Hum Genet 130(1):59–78

    Article  PubMed  Google Scholar 

  • Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C (2013) Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45(10):1127–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobain EF, Hayes DF (2015) Indications for prognostic gene expression profiling in early breast cancer. Curr Treat Options Oncol 16(5):23

    Article  PubMed  Google Scholar 

  • Corless CL (2011) Medicine. Personalized cancer diagnostics. Science 334(6060):1217–1218

    Article  CAS  PubMed  Google Scholar 

  • Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson SJ, Rueda OM, Aparicio S, Caldas C (2013) A new genome-driven integrated classification of breast cancer and its implications. EMBO J 32(5):617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Maeyer L, Van Limbergen E, De Nys K et al (2008) Does estrogen receptor negative/progesterone receptor positive breast carcinoma exist? J Clin Oncol 26(2):335–336 (author reply 336–338)

    Google Scholar 

  • Denkert C, Loibl S, Noske A et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105–113

    Article  CAS  PubMed  Google Scholar 

  • Denkert C, von Minckwitz G, Brase JC et al (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991

    Article  CAS  PubMed  Google Scholar 

  • Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14(16):5158–5165

    Article  CAS  PubMed  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group, Davies C, Godwin J et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784

    Google Scholar 

  • Farmer H, McCabe N, Lord CJ et al (2005a) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  • Farmer P, Bonnefoi H, Becette V et al (2005b) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24(29):4660–4671

    Article  CAS  PubMed  Google Scholar 

  • Fasching PA, Pharoah PD, Cox A et al (2012) The role of genetic breast cancer susceptibility variants as prognostic factors. Hum Mol Genet 21(17):3926–3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527

    Article  CAS  PubMed  Google Scholar 

  • Fioretti FM, Sita-Lumsden A, Bevan CL, Brooke GN (2014) Revising the role of the androgen receptor in breast cancer. J Mol Endocrinol 52(3):R257–R265

    Article  CAS  PubMed  Google Scholar 

  • Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Foulkes WD, Shuen AY (2013) In brief: BRCA1 and BRCA2. J Pathol 230(4):347–349

    Article  CAS  PubMed  Google Scholar 

  • Frampton GM, Fichtenholtz A, Otto GA et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31(11):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37

    Article  CAS  PubMed  Google Scholar 

  • Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu-Trantien C, Loi S, Garaud S et al (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123(7):2873–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gucalp A, Tolaney S, Isakoff SJ et al (2013) Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res 19(19):5505–5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyorffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B, Pusztai L (2015) Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res 17:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134(7):e48–e72

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hanker LC, Rody A, Holtrich U et al (2013) Prognostic evaluation of the B cell/IL-8 metagene in different intrinsic breast cancer subtypes. Breast Cancer Res Treat 137(2):407–416

    Article  CAS  PubMed  Google Scholar 

  • Hansen AR, Bedard PL (2013) Clinical application of high-throughput genomic technologies for treatment selection in breast cancer. Breast Cancer Res 15(5):R97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatzis C, Pusztai L, Valero V et al (2011) A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305(18):1873–1881

    Article  CAS  PubMed  Google Scholar 

  • He J, Peng R, Yuan Z et al (2012) Prognostic value of androgen receptor expression in operable triple-negative breast cancer: a retrospective analysis based on a tissue microarray. Med Oncol 29(2):406–410

    Article  CAS  PubMed  Google Scholar 

  • Hefti MM, Hu R, Knoblauch NW et al (2013) Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res 15(4):R68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess KR, Wei C, Qi Y, Iwamoto T, Symmans WF, Pusztai L (2011) Lack of sufficiently strong informative features limits the potential of gene expression analysis as predictive tool for many clinical classification problems. BMC Bioinf 12:463

    Article  Google Scholar 

  • Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom 7:96

    Article  CAS  Google Scholar 

  • Hu R, Dawood S, Holmes MD et al (2011) Androgen receptor expression and breast cancer survival in postmenopausal women. Clin Cancer Res 17(7):1867–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatiadis M, Singhal SK, Desmedt C et al (2012) Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis. J Clin Oncol 30(16):1996–2004

    Article  CAS  PubMed  Google Scholar 

  • Issa-Nummer Y, Darb-Esfahani S, Loibl S et al (2013) Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer—a substudy of the neoadjuvant GeparQuinto trial. PLoS ONE 8(12):e79775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang T, Shi W, Natowicz R et al (2014) Statistical measures of transcriptional diversity capture genomic heterogeneity of cancer. BMC Genom 15:876

    Article  Google Scholar 

  • Jones S, Chen WD, Parmigiani G et al (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 105(11):4283–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karn T (2013) High-throughput gene expression and mutation profiling: current methods and future perspectives. Breast Care (Basel) 8(6):401–406

    Google Scholar 

  • Karn T, Pusztai L, Holtrich U et al (2011) Homogeneous datasets of triple negative breast cancers enable the identification of novel prognostic and predictive signatures. PLoS ONE 6(12):e28403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karn T, Pusztai L, Rody A, Holtrich U, Becker S (2015) The influence of host factors on the prognosis of breast cancer: stroma and immune cell components as cancer biomarkers. Curr Cancer Drug Targets 15(8):652–664

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann M, Pusztai L, Biedenkopf Expert Panel M (2011) Use of standard markers and incorporation of molecular markers into breast cancer therapy: Consensus recommendations from an International Expert Panel. Cancer 117(8):1575–1582

    Google Scholar 

  • Lawrence MS, Stojanov P, Mermel CH et al (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann BD, Bauer JA, Chen X et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann BD, Bauer JA, Schafer JM et al (2014) PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res 16(4):406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loi S, Sirtaine N, Piette F et al (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31(7):860–867

    Article  CAS  PubMed  Google Scholar 

  • Loi S, Michiels S, Salgado R et al (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550

    Article  CAS  PubMed  Google Scholar 

  • Loibl S, Muller BM, von Minckwitz G et al (2011) Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 130(2):477–487

    Article  CAS  PubMed  Google Scholar 

  • Loibl S, von Minckwitz G, Schneeweiss A et al (2014) PIK3CA mutations are associated with lower rates of pathologic complete response to anti-human epidermal growth factor receptor 2 (her2) therapy in primary HER2-overexpressing breast cancer. J Clin Oncol 32(29):3212–3220

    Article  CAS  PubMed  Google Scholar 

  • Majewski IJ, Nuciforo P, Mittempergher L et al (2015) PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer. J Clin Oncol 33(12):1334–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone KE, Daling JR, Doody DR et al (2006) Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res 66(16):8297–8308

    Article  CAS  PubMed  Google Scholar 

  • McGranahan N, Swanton C (2015) Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • McLeod HL (2013) Cancer pharmacogenomics: early promise, but concerted effort needed. Science 339(6127):1563–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menard S, Tomasic G, Casalini P et al (1997) Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res 3(5):817–819

    CAS  PubMed  Google Scholar 

  • Nagalla S, Chou JW, Willingham MC et al (2013) Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol 14(4):R34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narod SA (2010) BRCA mutations in the management of breast cancer: the state of the art. Nat Rev Clin Oncol 7(12):702–707

    Article  CAS  PubMed  Google Scholar 

  • Ng CK, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS (2015) Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J Natl Cancer Inst 107(5):[Epub ahead of print]

    Google Scholar 

  • Ni M, Chen Y, Lim E et al (2011) Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20(1):119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM, Bhargava R (2010) Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol 23(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Nik-Zainal S, Van Loo P, Wedge DC et al (2012) The life history of 21 breast cancers. Cell 149(5):994–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivotto IA, Truong PT, Speers CH et al (2004) Time to stop progesterone receptor testing in breast cancer management. J Clin Oncol 22(9):1769–1770

    Article  PubMed  Google Scholar 

  • Perez EA, Thompson EA, Ballman KV et al (2015) Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group n9831 Adjuvant Trastuzumab Trial. J Clin Oncol 33(7):701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perou CM, Jeffrey SS, van de Rijn M et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A 96(16):9212–9217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  • Pogue-Geile KL, Song N, Jeong JH et al (2015) Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. J Clin Oncol 33(12):1340–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova T, Manie E, Rieunier G et al (2012) Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 72(21):5454–5462

    Article  CAS  PubMed  Google Scholar 

  • Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prat A, Ellis MJ, Perou CM (2012) Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol 9(1):48–57

    Article  CAS  Google Scholar 

  • Pusztai L, Rouzier R, Symmans WF (2015) CCR 20th anniversary commentary: divide and conquer-breast cancer subtypes and response to therapy. Clin Cancer Res 21(16):3575–3577

    Article  CAS  PubMed  Google Scholar 

  • Rahman N (2014a) Mainstreaming genetic testing of cancer predisposition genes. Clin Med (Lond) 14(4):436–439

    Article  Google Scholar 

  • Rahman N (2014b) Realizing the promise of cancer predisposition genes. Nature 505(7483):302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO (2007a) Prognostic markers in triple-negative breast cancer. Cancer 109(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Rakha EA, El-Sayed ME, Green AR et al (2007b) Biologic and clinical characteristics of breast cancer with single hormone receptor positive phenotype. J Clin Oncol 25(30):4772–4778

    Article  PubMed  Google Scholar 

  • Reis-Filho JS, Pusztai L (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378(9805):1812–1823

    Article  CAS  PubMed  Google Scholar 

  • Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JL, Macarthur S, Ross-Innes CS et al (2011) Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J 30(15):3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rody A, Karn T, Solbach C et al (2007) The erbB2+ cluster of the intrinsic gene set predicts tumor response of breast cancer patients receiving neoadjuvant chemotherapy with docetaxel, doxorubicin and cyclophosphamide within the GEPARTRIO trial. Breast 16(3):235–240

    Article  CAS  PubMed  Google Scholar 

  • Rody A, Holtrich U, Pusztai L et al (2009) T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res 11(2):R15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rody A, Karn T, Liedtke C et al (2011) A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res 13(5):R97

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouzier R, Perou CM, Symmans WF et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685

    Article  CAS  PubMed  Google Scholar 

  • Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM (2012) Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A 109(8):2796–2801

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Bohm D, von Torne C et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405–5413

    Article  CAS  PubMed  Google Scholar 

  • Schouten PC, Linn SC (2015) Challenges in the use of DNA repair deficiency as a biomarker in breast cancer. J Clin Oncol 33(17):1867–1869

    Article  PubMed  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  • Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399

    CAS  PubMed  Google Scholar 

  • Shah PD, Gucalp A, Traina TA (2013) The role of the androgen receptor in triple-negative breast cancer. Womens Health (Lond Engl) 9(4):351–360

    Article  CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Shibata D (2012) Cancer. heterogeneity and tumor history. Science 336(6079):304–305

    Article  CAS  PubMed  Google Scholar 

  • Simon R, Roychowdhury S (2013) Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov 12(5):358–369

    Article  CAS  PubMed  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  CAS  PubMed  Google Scholar 

  • Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 331(6024):1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8(8):R157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tofigh A, Suderman M, Paquet ER et al (2014) The prognostic ease and difficulty of invasive breast carcinoma. Cell Rep 9(1):129–142

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trainer AH, Lewis CR, Tucker K, Meiser B, Friedlander M, Ward RL (2010) The role of BRCA mutation testing in determining breast cancer therapy. Nat Rev Clin Oncol 7(12):708–717

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Tutt AN (2012) Platinum chemotherapy for BRCA1-related breast cancer: do we need more evidence? Breast Cancer Res 14(6):115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Google Scholar 

  • Vera-Badillo FE, Templeton AJ, de Gouveia P et al (2014) Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst 106(1):djt319

    Google Scholar 

  • Vidula N, Rugo HS (2015) Translating the molecular message of triple-negative breast cancer into targeted therapy. Clin Cancer Res 21(7):1511–1513

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollebergh MA, Lips EH, Nederlof PM et al (2011) An aCGH classifier derived from BRCA1-mutated breast cancer and benefit of high-dose platinum-based chemotherapy in HER2-negative breast cancer patients. Ann Oncol 22(7):1561–1570

    Article  CAS  PubMed  Google Scholar 

  • Wang L, McLeod HL, Weinshilboum RM (2011) Genomics and drug response. N Engl J Med 364(12):1144–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZC, Birkbak NJ, Culhane AC et al (2012) Profiles of genomic instability in high-grade serous ovarian cancer predict treatment outcome. Clin Cancer Res 18(20):5806–5815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins JA, Irshad S, Grigoriadis A, Tutt AN (2014) Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res 16(3):211

    Article  PubMed  PubMed Central  Google Scholar 

  • Watkins J, Weekes D, Shah V et al (2015) Genomic complexity profiling reveals that HORMAD1 overexpression contributes to homologous recombination deficiency in triple-negative breast cancers. Cancer Discov 5(5):488–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6(12):718–730

    Article  CAS  PubMed  Google Scholar 

  • Weigelt B, Pusztai L, Ashworth A, Reis-Filho JS (2012) Challenges translating breast cancer gene signatures into the clinic. Nat Rev Clin Oncol 9(1):58–64

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Hatzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karn, T., Hatzis, C. (2016). Genomic Markers in ER-Negative Breast Cancer. In: Badve, S., Gökmen-Polar, Y. (eds) Molecular Pathology of Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-41761-5_19

Download citation

Publish with us

Policies and ethics