Skip to main content

Novel Imaging Based Biomarkers in Breast Cancer

  • Chapter
  • First Online:
Molecular Pathology of Breast Cancer

Abstract

Molecular imaging plays an ever-increasing role in the evaluation of breast cancer. While mammography, ultrasound, and MRI remain the primary imaging modalities involved in screening for and diagnosing breast cancer, positron emission tomography (PET) offers biochemical and quantitative molecular information specific to each tumor. 2-[18F]-fluoro-2-deoxy-D-glucose (FDG), a tracer of glycolysis, is the most commonly used PET radiopharmaceutical in the clinic, utilized primarily for staging and restaging, and its role continues to evolve. However, PET tracers beyond FDG also demonstrate the ability to assess other aspects tumor biology and prediction and early assessment of treatment response. Novel PET tracers reviewed in this chapter, including those targeting steroid receptors, HER2 receptor, and cell proliferation, may serve as valuable biomarkers in clinical medicine and may also guide the development and used of targeted breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Nabulsi I, Mach RH, Wang LM et al (1999) Effect of ploidy, recruitment, environmental factors, and tamoxifen treatment on the expression of sigma-2 receptors in proliferating and quiescent tumour cells. Br J Cancer 81(6):925–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11(2):155–168

    CAS  PubMed  Google Scholar 

  • Alvarez JV, Belka GK, Pan TC et al (2014) Oncogene pathway activation in mammary tumors dictates FDG-PET uptake. Cancer Res 74(24):7583–7598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aukema TS, Rutgers EJ, Vogel WV et al (2010) The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques. Eur J Surg Oncol 36(4):387–392

    Article  CAS  PubMed  Google Scholar 

  • Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80S

    Article  CAS  PubMed  Google Scholar 

  • Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM (2003) Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21(10):1973–1979

    Article  CAS  PubMed  Google Scholar 

  • Beer AJ, Niemeyer M, Carlsen J et al (2008) Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 49(2):255–259

    Article  PubMed  Google Scholar 

  • Beresford MJ, Wilson GD, Makris A (2006) Measuring proliferation in breast cancer: practicalities and applications. Breast Cancer Res 8(6):216

    Article  PubMed  PubMed Central  Google Scholar 

  • Berriolo-Riedinger A, Touzery C, Riedinger JM et al (2007) [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 34(12):1915–1924

    Article  CAS  PubMed  Google Scholar 

  • Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379

    CAS  PubMed  Google Scholar 

  • Bos R, van Der Hoeven JJ, van Der Wall E et al (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20(2):379–387

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois AC, Warren LA, Chang TT, Embry S, Hudson K, Bradley YC (2013) Role of positron emission tomography/computed tomography in breast cancer. Radiol Clin North Am 51(5):781–798

    Article  PubMed  Google Scholar 

  • Brown RS, Wahl RL (1993) Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72(10):2979–2985

    Article  CAS  PubMed  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  PubMed  Google Scholar 

  • Buck AK, Schirrmeister H, Mattfeldt T, Reske SN (2004) Biological characterisation of breast cancer by means of PET. Eur J Nucl Med Mol Imaging 31(Suppl 1):S80–S87

    Article  PubMed  Google Scholar 

  • CAP Guidelines (2013) http://www.cap.org/apps/docs/committees/immunohistochemistry/summary_of_recommendations.pdf

  • Capala J, Bouchelouche K (2010) Molecular imaging of HER2-positive breast cancer: a step toward an individualized ‘image and treat’ strategy. Curr Opin Oncol 22(6):559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlomagno C, Perrone F, Gallo C et al (1996) c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol 14(10):2702–2708

    CAS  PubMed  Google Scholar 

  • Chan SR, Fowler AM, Allen JA et al (2015) Longitudinal noninvasive imaging of progesterone receptor as a predictive biomarker of tumor responsiveness to estrogen deprivation therapy. Clin Cancer Res 21(5):1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Contractor KB, Kenny LM, Stebbing J et al (2009) [11C]choline positron emission tomography in estrogen receptor-positive breast cancer. Clin Cancer Res 15(17):5503–5510

    Article  CAS  PubMed  Google Scholar 

  • Contractor KB, Kenny LM, Stebbing J et al (2011a) Biological basis of [(11)C]choline-positron emission tomography in patients with breast cancer: comparison with [(18)F]fluorothymidine positron emission tomography. Nucl Med Commun 32(11):997–1004

    Article  CAS  PubMed  Google Scholar 

  • Contractor KB, Kenny LM, Stebbing J et al (2011b) [18F]-3’Deoxy-3’-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Cancer Res 17(24):7664–7672

    Article  CAS  PubMed  Google Scholar 

  • Contractor K, Aboagye EO, Jacob J, Challapalli A, Coombes RC, Stebbing J (2012) Monitoring early response to taxane therapy in advanced breast cancer with circulating tumor cells and [(18)F] 3-deoxy-3-fluorothymidine PET: a pilot study. Biomark Med 6(2):231–233

    Article  CAS  PubMed  Google Scholar 

  • Cooper KL, Harnan S, Meng Y et al (2011) Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: A systematic review and meta-analysis. Eur J Surg Oncol 37(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Dehdashti F, Mortimer JE, Siegel BA et al (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36(10):1766–1774

    CAS  PubMed  Google Scholar 

  • Dehdashti F, Mortimer JE, Trinkaus K et al (2009) PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat 113(3):509–517

    Article  CAS  PubMed  Google Scholar 

  • Dehdashti F, Laforest R, Gao F et al (2012) Assessment of progesterone receptors in breast carcinoma by PET with 21-18F-fluoro-16α, 17α-[(R)-(1′-α-furylmethylidene)dioxy]-19-norpregn- 4-ene-3,20-dione. J Nucl Med 53(3):363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehdashti F, Laforest R, Gao F et al (2013) Assessment of cellular proliferation in tumors by PET using 18F-ISO-1. J Nucl Med 54(3):350–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Leo A, Jerusalem G, Petruzelka L et al (2010) Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol 28(30):4594–4600

    Article  PubMed  CAS  Google Scholar 

  • Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87(5):586–592

    Article  CAS  PubMed  Google Scholar 

  • Doane AS, Danso M, Lal P et al (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25(28):3994–4008

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Cullum I, Illidge TM, Ell PJ (2007) Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 25(23):3440–3447

    Article  PubMed  Google Scholar 

  • Dunnwald LK, Rossing MA, Li CI (2007) Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res 9(1):R6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunnwald LK, Gralow JR, Ellis GK et al (2008) Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 26(27):4449–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G, Felici A, Papaldo P, Fabi A, Cognetti F (2007) HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol 19(1):56–62

    Article  PubMed  Google Scholar 

  • Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508

    Article  PubMed  Google Scholar 

  • Fowler AM, Chan SR, Sharp TL et al (2012) Small-animal PET of steroid hormone receptors predicts tumor response to endocrine therapy using a preclinical model of breast cancer. J Nucl Med 53(7):1119–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaykema SB, Brouwers AH, Lub-de Hooge MN et al (2013) 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med 54(7):1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Gebhart G, Gamez C, Holmes E et al (2013) 18F-FDG PET/CT for early prediction of response to neoadjuvant lapatinib, trastuzumab, and their combination in HER2-positive breast cancer: results from Neo-ALTTO. J Nucl Med 54(11):1862–1868

    Article  CAS  PubMed  Google Scholar 

  • Gerdes J, Li L, Schlueter C et al (1991) Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 138(4):867–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glunde K, Jacobs MA, Bhujwalla ZM (2006) Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn 6(6):821–829

    Article  CAS  PubMed  Google Scholar 

  • Glunde K, Bhujwalla ZM, Ronen SM (2011) Choline metabolism in malignant transformation. Nat Rev Cancer 11(12):835–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldhirsch A, Colleoni M, Gelber RD (2002) Endocrine therapy of breast cancer. Ann Oncol 13(Suppl 4):61–68

    Article  PubMed  Google Scholar 

  • Groheux D, Espie M, Giacchetti S, Hindie E (2013a) Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 266(2):388–405

    Article  PubMed  Google Scholar 

  • Groheux D, Giacchetti S, Hatt M et al (2013b) HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. Br J Cancer 109(5):1157–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guitart X, Codony X, Monroy X (2004) Sigma receptors: biology and therapeutic potential. Psychopharmacology 174(3):301–319

    Article  CAS  PubMed  Google Scholar 

  • Gusterson BA, Gelber RD, Goldhirsch A et al (1992) Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol 10(7):1049–1056

    CAS  PubMed  Google Scholar 

  • Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082

    Article  CAS  PubMed  Google Scholar 

  • Heusner TA, Kuemmel S, Umutlu L et al (2008) Breast cancer staging in a single session: whole-body PET/CT mammography. J Nucl Med 49(8):1215–1222

    Article  PubMed  Google Scholar 

  • Hickey TE, Robinson JL, Carroll JS, Tilley WD (2012) Minireview: The androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol 26(8):1252–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindie E, Groheux D, Brenot-Rossi I, Rubello D, Moretti JL, Espie M (2011) The sentinel node procedure in breast cancer: nuclear medicine as the starting point. J Nucl Med 52(3):405–414

    Article  PubMed  Google Scholar 

  • Hong S, Li J, Wang S (2013) 18FDG PET-CT for diagnosis of distant metastases in breast cancer patients. A meta-analysis. Surg Oncol 22(2):139–143

    Article  PubMed  Google Scholar 

  • Horwitz KB, McGuire WL (1975) Specific progesterone receptors in human breast cancer. Steroids 25(4):497–505

    Article  CAS  PubMed  Google Scholar 

  • Horwitz KB, Koseki Y, McGuire WL (1978) Estrogen control of progesterone receptor in human breast cancer: role of estradiol and antiestrogen. Endocrinology 103(5):1742–1751

    Article  CAS  PubMed  Google Scholar 

  • Huang YS, Lu HL, Zhang LJ, Wu Z (2014) Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy. Med Res Rev 34(3):532–566

    Article  CAS  PubMed  Google Scholar 

  • Humbert O, Berriolo-Riedinger A, Riedinger JM et al (2012) Changes in 18F-FDG tumor metabolism after a first course of neoadjuvant chemotherapy in breast cancer: influence of tumor subtypes. Ann Oncol 23(10):2572–2577

    Article  CAS  PubMed  Google Scholar 

  • Humbert O, Cochet A, Riedinger JM et al (2014) HER2-positive breast cancer: (18)F-FDG PET for early prediction of response to trastuzumab plus taxane-based neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 41(8):1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Humbert O, Cochet A, Coudert B et al (2015) Role of positron emission tomography for the monitoring of response to therapy in breast cancer. Oncologist 20(2):94–104

    Google Scholar 

  • Huovinen R, Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M (1993) Carbon-11-methionine and PET in evaluation of treatment response of breast cancer. Br J Cancer 67(4):787–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK (2005) Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park) 19(4 Suppl 3):7–16

    Google Scholar 

  • John CS, Vilner BJ, Bowen WD (1994) Synthesis and characterization of [125I]-N-(N-benzylpiperidin-4-yl)-4- iodobenzamide, a new sigma receptor radiopharmaceutical: high-affinity binding to MCF-7 breast tumor cells. J Med Chem 37(12):1737–1739

    Article  CAS  PubMed  Google Scholar 

  • John CS, Vilner BJ, Gulden ME et al (1995) Synthesis and pharmacological characterization of 4-[125I]-N-(N-benzylpiperidin-4-yl)-4-iodobenzamide: a high affinity sigma receptor ligand for potential imaging of breast cancer. Cancer Res 55(14):3022–3027

    CAS  PubMed  Google Scholar 

  • Jonson SD, Welch MJ (1999) Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[18F]fluorobenzoate. Nucl Med Biol 26(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Keam B, Im SA, Koh Y et al (2011) Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy. BMC Cancer 11:452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keam B, Im SA, Koh Y et al (2013) Predictive value of FDG PET/CT for pathologic axillary node involvement after neoadjuvant chemotherapy. Breast Cancer 20(2):167–173

    Article  PubMed  Google Scholar 

  • Keen JC, Davidson NE (2003) The biology of breast carcinoma. Cancer 97(3 Suppl):825–833

    Article  PubMed  Google Scholar 

  • Kenny LM, Vigushin DM, Al-Nahhas A et al (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21):10104–10112

    Article  CAS  PubMed  Google Scholar 

  • Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347

    Article  PubMed  Google Scholar 

  • Kenny LM, Al-Nahhas A, Aboagye EO (2011) Novel PET biomarkers for breast cancer imaging. Nucl Med Commun 32(5):333–335

    Article  PubMed  Google Scholar 

  • Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ (1984) Preparation of four fluorine- 18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 25(11):1212–1221

    CAS  PubMed  Google Scholar 

  • Kiesewetter DO, Kramer-Marek G, Ma Y, Capala J (2008) Radiolabeling of HER2 specific Affibody(R) molecule with F-18. J Fluor Chem 129(9):799–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher MF, Hricak H, Larson SM (2012) Molecular imaging for personalized cancer care. Mol Oncol 6(2):182–195

    Article  CAS  PubMed  Google Scholar 

  • Ko BH, Paik JY, Jung KH, Lee KH (2010) 17beta-estradiol augments 18F-FDG uptake and glycolysis of T47D breast cancer cells via membrane-initiated rapid PI3K-Akt activation. J Nucl Med 51(11):1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Kostakoglu L, Duan F, Idowu MO, Jolles PR, Bear HD, Muzi M, Cormack J, Pryma DA, Specht JM, Hovanessian Larsen L, Miliziano J, Mallett S, Shields AF, David A (2014) Mankoff phase II study of 3′-deoxy-3′-18F fluorothymidine PET/CT (FLT-PET) in the assessment of early response in locally advanced breast cancer (LABC): preliminary results of ACRIN 6688. In: ASCO Annual Meeting

    Google Scholar 

  • Kramer-Marek G, Kiesewetter DO, Capala J (2009) Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and (18)F-labeled affibody molecules. J Nucl Med 50(7):1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurland BF, Peterson LM, Lee JH et al (2011) Between-patient and within-patient (site-to-site) variability in estrogen receptor binding, measured in vivo by 18F-fluoroestradiol PET. J Nucl Med 52(10):1541–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurland BF, Gadi VK, Specht JM et al (2012) Feasibility study of FDG PET as an indicator of early response to aromatase inhibitors and trastuzumab in a heterogeneous group of breast cancer patients. EJNMMI Res 2(1):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurokawa H, Arteaga CL (2003) ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms. Clin Cancer Res 9(1 Pt 2):511S–515S

    CAS  PubMed  Google Scholar 

  • Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J (1996) Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14(9):2584–2589

    CAS  PubMed  Google Scholar 

  • Lanari C, Lamb CA, Fabris VT et al (2009) The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer 16(2):333–350

    Article  CAS  PubMed  Google Scholar 

  • Lee JH (2013) Radionuclide methods for breast cancer staging. Semin Nucl Med 43(4):294–298

    Article  PubMed  Google Scholar 

  • Lee JH, Zhou HB, Dence CS, Carlson KE, Welch MJ, Katzenellenbogen JA (2010) Development of [F-18]fluorine-substituted Tanaproget as a progesterone receptor imaging agent for positron emission tomography. Bioconjug Chem 21(6):1096–1104

    Article  CAS  PubMed  Google Scholar 

  • Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Joensuu H (1991) Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer 64(6):1121–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CI, Daling JR, Malone KE (2003) Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998. J Clin Oncol 21(1):28–34

    Article  CAS  PubMed  Google Scholar 

  • Linden HM, Dehdashti F (2013) Novel methods and tracers for breast cancer imaging. Semin Nucl Med 43(4):324–329

    Article  PubMed  Google Scholar 

  • Linden HM, Stekhova SA, Link JM et al (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24(18):2793–2799

    Article  CAS  PubMed  Google Scholar 

  • Linden HM, Kurland BF, Peterson LM et al (2011) Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Cancer Res 17(14):4799–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindholm P, Lapela M, Nagren K, Lehikoinen P, Minn H, Jyrkkio S (2009) Preliminary study of carbon-11 methionine PET in the evaluation of early response to therapy in advanced breast cancer. Nucl Med Commun 30(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2014) Role of FDG PET-CT in evaluation of locoregional nodal disease for initial staging of breast cancer. World J Clin Oncol 5(5):982–989

    Article  PubMed  PubMed Central  Google Scholar 

  • Mach RH, Smith CR, al-Nabulsi I, Whirrett BR, Childers SR, Wheeler KT (1997) Sigma 2 receptors as potential biomarkers of proliferation in breast cancer. Cancer Res 57(1):156–161

    Google Scholar 

  • Mach RH, Dehdashti F, Wheeler KT (2009) PET radiotracers for imaging the proliferative status of solid tumors. PET Clin 4(1):1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Mankoff DA, Tewson TJ, Eary JF (1997) Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16α-fluoroestradiol (FES). Nucl Med Biol 24(4):341–348

    Article  CAS  PubMed  Google Scholar 

  • Mankoff DA, Dunnwald LK, Gralow JR et al (2003) Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 44(11):1806–1814

    PubMed  Google Scholar 

  • Mankoff DA, Shields AF, Krohn KA (2005) PET imaging of cellular proliferation. Radiol Clin North Am 43(1):153–167

    Article  PubMed  Google Scholar 

  • Mankoff DA, Link JM, Linden HM, Sundararajan L, Krohn KA (2008) Tumor receptor imaging. J Nucl Med 49(Suppl 2):149S–163S

    Article  CAS  PubMed  Google Scholar 

  • Mankoff DA, Specht JM, Eubank WB, Kessler L (2012) [(18)F]fluorodeoxyglucose positron emission tomography-computed tomography in breast cancer: when… and when not? J Clin Oncol 30(12):1252–1254

    Article  CAS  PubMed  Google Scholar 

  • Mankoff DA, Pryma DA, Clark AS (2014) Molecular imaging biomarkers for oncology clinical trials. J Nucl Med 55(4):525–528

    Article  CAS  PubMed  Google Scholar 

  • Mathias CJ, Welch MJ, Katzenellenbogen JA et al (1987) Characterization of the uptake of 16 alpha-([18F]fluoro)-17 beta-estradiol in DMBA-induced mammary tumors. Int J Rad Appl Instrum B 14(1):15–25

    Article  CAS  PubMed  Google Scholar 

  • McGuire AH, Dehdashti F, Siegel BA et al (1991) Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32(8):1526–1531

    CAS  PubMed  Google Scholar 

  • Mehta J, Asthana S, Mandal CC, Saxena S (2015) A molecular analysis provides novel insights into androgen receptor signalling in breast cancer. PLoS ONE 10(3):e0120622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mghanga FP, Lan X, Bakari KH, Li C, Zhang Y (2013) Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in monitoring the response of breast cancer to neoadjuvant chemotherapy: a meta-analysis. Clin Breast Cancer 13(4):271–279

    Article  PubMed  Google Scholar 

  • Mintun MA, Welch MJ, Siegel BA et al (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169(1):45–48

    Article  CAS  PubMed  Google Scholar 

  • Morris PG, Ulaner GA, Eaton A et al (2012) Standardized uptake value by positron emission tomography/computed tomography as a prognostic variable in metastatic breast cancer. Cancer 118(22):5454–5462

    Article  PubMed  Google Scholar 

  • Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19(11):2797–2803

    CAS  PubMed  Google Scholar 

  • Murakami R, Kumita S, Yoshida T et al (2012) FDG-PET/CT in the diagnosis of recurrent breast cancer. Acta Radiol 53(1):12–16

    Article  PubMed  Google Scholar 

  • National Comprehensive Cancer Network (NCCN). (2016) Guidelines: Invasive Breast Cancer. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf

  • Natrajan R, Weigelt B, Mackay A et al (2010) An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat 121(3):575–589

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Chen Y, Lim E et al (2011) Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20(1):119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahk K, Rhee S, Cho J et al (2014) The role of interim 18F-FDG PET/CT in predicting early response to neoadjuvant chemotherapy in breast cancer. Anticancer Res 34(8):4447–4455

    CAS  PubMed  Google Scholar 

  • Peters AA, Buchanan G, Ricciardelli C et al (2009) Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res 69(15):6131–6140

    Article  CAS  PubMed  Google Scholar 

  • Peterson LM, Mankoff DA, Lawton T et al (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49(3):367–374

    Article  PubMed  Google Scholar 

  • Peterson LM, Kurland BF, Schubert EK et al (2014) A phase 2 study of 16alpha-[18F]-fluoro-17beta-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC). Mol Imaging Biol 16(3):431–440

    Article  PubMed  Google Scholar 

  • Phillips KA, Marshall DA, Haas JS et al (2009) Clinical practice patterns and cost effectiveness of human epidermal growth receptor 2 testing strategies in breast cancer patients. Cancer 115(22):5166–5174

    Article  PubMed  PubMed Central  Google Scholar 

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353(16):1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Pio BS, Park CK, Pietras R et al (2006) Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 8(1):36–42

    Article  PubMed  Google Scholar 

  • Potts SJ, Krueger JS, Landis ND et al (2012) Evaluating tumor heterogeneity in immunohistochemistry-stained breast cancer tissue. Lab Invest 92(9):1342–1357

    Article  PubMed  Google Scholar 

  • Puhalla S, Bhattacharya S, Davidson NE (2012) Hormonal therapy in breast cancer: a model disease for the personalization of cancer care. Mol Oncol 6(2):222–236

    Article  CAS  PubMed  Google Scholar 

  • Romero Q, Bendahl PO, Klintman M et al (2011) Ki67 proliferation in core biopsies versus surgical samples—a model for neo-adjuvant breast cancer studies. BMC Cancer 11:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684

    Article  CAS  PubMed  Google Scholar 

  • Rong J, Wang S, Ding Q, Yun M, Zheng Z, Ye S (2013) Comparison of 18F-FDG PET-CT and bone scintigraphy for detection of bone metastases in breast cancer patients. A meta-analysis. Surg Oncol 22(2):86–91

    Article  PubMed  Google Scholar 

  • Ross JS, Fletcher JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16(6):413–428

    Article  CAS  PubMed  Google Scholar 

  • Rousseau C, Devillers A, Campone M et al (2011) FDG PET evaluation of early axillary lymph node response to neoadjuvant chemotherapy in stage II and III breast cancer patients. Eur J Nucl Med Mol Imaging 38(6):1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Santinelli A, Pisa E, Stramazzotti D, Fabris G (2008) HER-2 status discrepancy between primary breast cancer and metastatic sites. Impact on target therapy. Int J Cancer 122(5):999–1004

    Article  CAS  PubMed  Google Scholar 

  • Schiavon G, Smith IE (2014) Status of adjuvant endocrine therapy for breast cancer. Breast Cancer Res 16(2):206

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiff R, Massarweh S, Shou J, Osborne CK (2003) Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 9(1 Pt 2):447S–454S

    CAS  PubMed  Google Scholar 

  • Schwarz-Dose J, Untch M, Tiling R et al (2009) Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol 27(4):535–541

    Article  PubMed  Google Scholar 

  • Shankar LK, Hoffman JM, Bacharach S et al (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 47(6):1059–1066

    CAS  PubMed  Google Scholar 

  • Shields AF, Grierson JR, Dohmen BM et al (1998a) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336

    Article  CAS  PubMed  Google Scholar 

  • Shields AF, Mankoff DA, Link JM et al (1998b) Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 39(10):1757–1762

    CAS  PubMed  Google Scholar 

  • Shoghi KI, Xu J, Su Y et al (2013) Quantitative receptor-based imaging of tumor proliferation with the sigma-2 ligand [(18)F]ISO-1. PLoS ONE 8(9):e74188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjogren S, Inganas M, Lindgren A, Holmberg L, Bergh J (1998) Prognostic and predictive value of c-erbB-2 overexpression in primary breast cancer, alone and in combination with other prognostic markers. J Clin Oncol 16(2):462–469

    CAS  PubMed  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    Article  CAS  PubMed  Google Scholar 

  • Soloviev D, Lewis D, Honess D, Aboagye E (2012) [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 48(4):416–424

    Article  CAS  PubMed  Google Scholar 

  • Spataro V, Price K, Goldhirsch A et al (1992) Sequential estrogen receptor determinations from primary breast cancer and at relapse: prognostic and therapeutic relevance. The International Breast Cancer Study Group (formerly Ludwig Group). Ann Oncol 3(9):733–740

    CAS  PubMed  Google Scholar 

  • Specht JM, Tam SL, Kurland BF et al (2007) Serial 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP). Breast Cancer Res Treat 105(1):87–94

    Article  PubMed  Google Scholar 

  • Sullivan RP, Mortimer G, Muircheartaigh IO (1993) Cell proliferation in breast tumours: analysis of histological parameters Ki67 and PCNA expression. Ir J Med Sci 162(9):343–347

    Article  CAS  PubMed  Google Scholar 

  • Surti S (2015) Update on time-of-flight PET imaging. J Nucl Med 56(1):98–105

    Article  PubMed  Google Scholar 

  • Tagliabue L, Del Sole A (2014) Appropriate use of positron emission tomography with [(18)F]fluorodeoxyglucose for staging of oncology patients. Eur J Intern Med 25(1):6–11

    Article  PubMed  Google Scholar 

  • Tamura K, Kurihara H, Yonemori K et al (2013) 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med 54(11):1869–1875

    Article  CAS  PubMed  Google Scholar 

  • Tannock I (2013) The basic science of oncology, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Tateishi U, Gamez C, Dawood S, Yeung HW, Cristofanilli M, Macapinlac HA (2008) Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology 247(1):189–196

    Article  PubMed  Google Scholar 

  • Tateishi U, Terauchi T, Akashi-Tanaka S et al (2012) Comparative study of the value of dual tracer PET/CT in evaluating breast cancer. Cancer Sci 103(9):1701–1707

    Article  CAS  PubMed  Google Scholar 

  • Tewson TJ, Mankoff DA, Peterson LM, Woo I, Petra P (1999) Interactions of 16alpha-[18F]-fluoroestradiol (FES) with sex steroid binding protein (SBP). Nucl Med Biol 26(8):905–913

    Article  CAS  PubMed  Google Scholar 

  • Thirlwell MP, Livingston RB, Murphy WK, Hart JS (1976) A rapid in vitro labeling index method for predicting response of human solid tumors to chemotherapy. Cancer Res 36(9 pt.1):3279–3283

    Google Scholar 

  • Treglia G, Giovannini E, Di Franco D et al (2012) The role of positron emission tomography using carbon-11 and fluorine-18 choline in tumors other than prostate cancer: a systematic review. Ann Nucl Med 26(6):451–461

    Article  CAS  PubMed  Google Scholar 

  • van Kruchten M, de Vries EG, Brown M et al (2013) PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol 14(11):e465–e475

    Article  PubMed  CAS  Google Scholar 

  • van Waarde A, Cobben DC, Suurmeijer AJ et al (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45(4):695–700

    PubMed  Google Scholar 

  • Veronesi U, De Cicco C, Galimberti VE et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18(3):473–478

    Article  CAS  PubMed  Google Scholar 

  • Vilner BJ, de Costa BR, Bowen WD (1995a) Cytotoxic effects of sigma ligands: sigma receptor-mediated alterations in cellular morphology and viability. J Neurosci 15(1 Pt 1):117–134

    CAS  PubMed  Google Scholar 

  • Vilner BJ, John CS, Bowen WD (1995b) Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 55(2):408–413

    CAS  PubMed  Google Scholar 

  • Wahl RL, Siegel BA, Coleman RE, Gatsonis CG, Group PETS (2004) Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 22(2):277–285

    Google Scholar 

  • Wang Y, Ulaner G, Manning HC, Bardia A, Mayer I, Dickler M, Maneval EC, Lewis J, Baselga J, Mahmood U (2015) Validation of target engagement using 18F-fluoroestradiol PET in patients undergoing therapy with selective estrogen receptor degrader, ARN-810 (GDC-0810). J Nucl Med 56:565

    Google Scholar 

  • Wheeler KT, Wang LM, Wallen CA et al (2000) Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer 82(6):1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CB, Lammertsma AA, McKenzie CG, Sikora K, Jones T (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 52(6):1592–1597

    CAS  PubMed  Google Scholar 

  • Woolf DK, Beresford M, Li SP et al (2014) Evaluation of FLT-PET-CT as an imaging biomarker of proliferation in primary breast cancer. Br J Cancer 110(12):2847–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Nishiyama Y, Ishikawa S et al (2007) Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34(10):1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Chu W, Xu J et al (2014) Synthesis, [(18)F] radiolabeling, and evaluation of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors for in vivo imaging of PARP-1 using positron emission tomography. Bioorg Med Chem 22(5):1700–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the following grants: Susan G. Komen, Komen SAC140060 and Department of Energy, DE-SE0012476, NIH training grant T32-EB004311, along with an institutional grant from the University of Pennsylvania Health System (Breast Cancer Translational Center of Excellence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Mankoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Edmonds, C.E., Mankoff, D.A. (2016). Novel Imaging Based Biomarkers in Breast Cancer. In: Badve, S., Gökmen-Polar, Y. (eds) Molecular Pathology of Breast Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-41761-5_13

Download citation

Publish with us

Policies and ethics