Skip to main content

Free Radicals in Andrology

  • Chapter
  • First Online:
Antioxidants in Andrology

Part of the book series: Trends in Andrology and Sexual Medicine ((TASM))

Abstract

Reactive oxygen species (ROS) are highly reactive oxidizing agents that, at physiologic levels, play an essential role in the health and well-being of aerobic organisms. When supraphysiological levels of ROS are produced or when the cells’ antioxidant defense mechanisms fail, a state of oxidative stress (OS) ensues. Immature sperm cells and leukocytes are the principal sources of ROS in seminal fluid. OS has been recognized as an important factor in the pathophysiology of male infertility as it can enhance sperm apoptosis, lipid peroxidation (LPO), and DNA fragmentation. Several assays that can directly or indirectly measure the amount of ROS in seminal fluid have been developed and should be considered during male fertility assessment. Once detected, OS should be properly managed through lifestyle modification, elimination of potential sources of ROS production, and oral antioxidant supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper TG et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45. doi:10.1093/humupd/dmp048.

    Article  PubMed  Google Scholar 

  2. Poongothai J, Gopenath TS, Manonayaki S. Genetics of human male infertility. Singapore Med J. 2009;50:336–47.

    CAS  PubMed  Google Scholar 

  3. Agarwal A et al. Reactive oxygen species as an independent marker of male factor infertility. Fertil Steril. 2006;86:878–85. doi:10.1016/j.fertnstert.2006.02.111.

    Article  CAS  PubMed  Google Scholar 

  4. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32:1–17. doi:10.5534/wjmh.2014.32.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lanzafame FM, La Vignera S, Vicari E, Calogero AE. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online. 2009;19:638–59.

    Article  CAS  PubMed  Google Scholar 

  6. Padron OF et al. Seminal reactive oxygen species and sperm motility and morphology in men with spinal cord injury. Fertil Steril. 1997;67:1115–20.

    Article  CAS  PubMed  Google Scholar 

  7. Aziz N, Agarwal A, Lewis-Jones I, Sharma RK, Thomas Jr AJ. Novel associations between specific sperm morphological defects and leukocytospermia. Fertil Steril. 2004;82:621–7. doi:10.1016/j.fertnstert.2004.02.112.

    Article  PubMed  Google Scholar 

  8. Moustafa MH et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19:129–38.

    Article  CAS  PubMed  Google Scholar 

  9. Alvarez JG, Storey BT. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev. 1995;42:334–46. doi:10.1002/mrd.1080420311.

    Article  CAS  PubMed  Google Scholar 

  10. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol. 2008;636:154–71. doi:10.1007/978-0-387-09597-4_9.

    Article  CAS  PubMed  Google Scholar 

  11. Halliwell B. Free radicals and vascular disease: how much do we know? BMJ. 1993;307:885–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lobascio AM et al. Involvement of seminal leukocytes, reactive oxygen species, and sperm mitochondrial membrane potential in the DNA damage of the human spermatozoa. Andrology. 2015;3:265–70. doi:10.1111/andr.302.

    Article  CAS  PubMed  Google Scholar 

  13. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93:3199–207. doi:10.1210/jc.2007-2616.

    Article  CAS  PubMed  Google Scholar 

  14. Gil-Guzman E et al. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16:1922–30.

    Article  CAS  PubMed  Google Scholar 

  15. Tanphaichitr N et al. Remodeling of the plasma membrane in preparation for sperm-egg recognition: roles of acrosomal proteins. Asian J Androl. 2015;17:574–82. doi:10.4103/1008-682X.152817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aitken RJ, Baker MA. Reactive oxygen species generation by human spermatozoa: a continuing enigma. Int J Androl. 2002;25:191–4.

    Article  PubMed  Google Scholar 

  17. Alani GT, El Yaseen HD. Creatine kinase activity and malondialdehyde in the seminal plasma of normospermic infertile males. Fac Med Baghdad. 2009;51:336–40.

    Google Scholar 

  18. Hallak J et al. Creatine kinase as an indicator of sperm quality and maturity in men with oligospermia. Urology. 2001;58:446–51.

    Article  CAS  PubMed  Google Scholar 

  19. Schatten H, Sun QY, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol. 2014;12:111. doi:10.1186/1477-7827-12-111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20:61–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi:10.1155/2014/360438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sandoval JS, Raburn D, Mausher S. Leukocytospermia: overview of diagnosis, implications, and management of a controversial finding. Middle East Fertil Soc J. 2013;18:129–34.

    Article  Google Scholar 

  23. World Health O. Laboratory manual of the WHO for the examination of human semen and sperm-cervical mucus interaction. Ann Ist Super Sanita. 2001;37:I–XII, 1–123.

    Google Scholar 

  24. Mupfiga C, Fisher D, Kruger T, Henkel R. The relationship between seminal leukocytes, oxidative status in the ejaculate, and apoptotic markers in human spermatozoa. Syst Biol Reprod Med. 2013;59:304–11. doi:10.3109/19396368.2013.821540.

    Article  CAS  PubMed  Google Scholar 

  25. Saleh RA et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril. 2002;78:1215–24.

    Article  PubMed  Google Scholar 

  26. Sharma RK, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22:575–83.

    CAS  PubMed  Google Scholar 

  27. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2:48–54.

    Article  PubMed  Google Scholar 

  28. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108(Pt 5):2017–25.

    CAS  PubMed  Google Scholar 

  29. de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(Suppl 1):15–21.

    Article  CAS  PubMed  Google Scholar 

  30. Zini A, De Lamirande E, Gagnon C. Low levels of nitric oxide promote human sperm capacitation in vitro. J Androl. 1995;16:424–31.

    CAS  PubMed  Google Scholar 

  31. Rivlin J, Mendel J, Rubinstein S, Etkovitz N, Breitbart H. Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod. 2004;70:518–22. doi:10.1095/biolreprod.103.020487.

    Article  CAS  PubMed  Google Scholar 

  32. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998;111(Pt 5):645–56.

    CAS  PubMed  Google Scholar 

  33. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41:183–97.

    Article  CAS  PubMed  Google Scholar 

  34. Print CG, Loveland KL. Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays. 2000;22:423–30. doi:10.1002/(SICI)1521-1878(200005)22:5<423::AID-BIES4>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  35. Hikim AP et al. Spontaneous germ cell apoptosis in humans: evidence for ethnic differences in the susceptibility of germ cells to programmed cell death. J Clin Endocrinol Metab. 1998;83:152–6. doi:10.1210/jcem.83.1.4485.

    Article  CAS  PubMed  Google Scholar 

  36. Fathi Najafi T et al. Assessment of sperm apoptosis and semen quality in infertile men-meta analysis. Iran Red Crescent Med J. 2012;14:182–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakkas D, Mariethoz E, St John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251:350–5. doi:10.1006/excr.1999.4586.

    Article  CAS  PubMed  Google Scholar 

  38. Henkel, R. DNA fragmentation and its influence on fertilization and pregnancy outcome. in: S.C. Oehninger, T.F. Kruger (Eds.) Male infertility: diagnosis and treatment. Informa Healthcare, London, UK; 2007:277–90.

    Google Scholar 

  39. Mahfouz RZ et al. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil Steril. 2010;93:814–21. doi:10.1016/j.fertnstert.2008.10.068.

    Article  CAS  PubMed  Google Scholar 

  40. Wang X et al. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80:531–5.

    Article  PubMed  Google Scholar 

  41. Halliwell B. How to characterize a biological antioxidant. Free Radic Res Commun. 1990;9:1–32.

    Article  CAS  PubMed  Google Scholar 

  42. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43.

    Article  PubMed  Google Scholar 

  43. Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides and protective action of seminal plasma. Fertil Steril. 1979;31:531–7.

    Article  CAS  PubMed  Google Scholar 

  44. Aitken RJ. Molecular mechanisms regulating human sperm function. Mol Hum Reprod. 1997;3:169–73.

    Article  CAS  PubMed  Google Scholar 

  45. Bansal AK, Bilaspuri GS. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. 2010; doi:10.4061/2011/686137.

    PubMed  PubMed Central  Google Scholar 

  46. Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function--in sickness and in health. J Androl. 2012;33:1096–106. doi:10.2164/jandrol.112.016535.

    Article  CAS  PubMed  Google Scholar 

  47. du Plessis SS et al. Effects of H(2)O(2) exposure on human sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia. 2010;42:206–10. doi:10.1111/j.1439-0272.2009.00980.x.

    Article  PubMed  Google Scholar 

  48. Urata K et al. Effect of endotoxin-induced reactive oxygen species on sperm motility. Fertil Steril. 2001;76:163–6.

    Article  CAS  PubMed  Google Scholar 

  49. Kourouma A. et al. In vitro assessment of ROS on motility of epididymal sperm of male rat exposed to intraperitoneal administration of nonylphenol Asian Pacific Journal of Reproduction. 2015;4:169–78.

    Google Scholar 

  50. Kemal Duru N, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril. 2000;74:1200–7.

    Article  CAS  PubMed  Google Scholar 

  51. Sharma RK, Said T, Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl. 2004;6:139–48.

    CAS  PubMed  Google Scholar 

  52. Thomson LK et al. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24:2061–70. doi:10.1093/humrep/dep214.

    Article  CAS  PubMed  Google Scholar 

  53. Aitken RJ, Krausz C. Oxidative stress. DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    Article  CAS  PubMed  Google Scholar 

  54. Evenson DP et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    Article  CAS  PubMed  Google Scholar 

  55. Khadem N, Poorhoseyni A, Jalali M, Akbary A, Heydari ST. Sperm DNA fragmentation in couples with unexplained recurrent spontaneous abortions. Andrologia. 2014;46:126–30. doi:10.1111/and.12056.

    Article  CAS  PubMed  Google Scholar 

  56. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17:3122–8.

    Article  CAS  PubMed  Google Scholar 

  57. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30:219–29. doi:10.2164/jandrol.108.006908.

    Article  CAS  PubMed  Google Scholar 

  58. Iommiello VM et al. Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int J Endocrinol. 2015;321901:2015. doi:10.1155/2015/321901.

    Google Scholar 

  59. Henkel R et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83:635–42. doi:10.1016/j.fertnstert.2004.11.022.

    Article  CAS  PubMed  Google Scholar 

  60. Majzoub A, Esteves SC, Gosalvez J, Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18:205–12. doi:10.4103/1008-682X.172642.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Agarwal A, Esteves SC. Varicocele and male infertility: current concepts and future perspectives. Asian J Androl. 2016;18:161–2. doi:10.4103/1008-682X.172819.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pfeiffer D, Berger J, Schoop C, Tauber R. A Doppler-based study on the prevalence of varicocele in German children and adolescents. Andrologia. 2006;38:13–9. doi:10.1111/j.1439-0272.2006.00680.x.

    Article  CAS  PubMed  Google Scholar 

  63. ElBardisi H, et al. Varicocele among infertile men in Qatar. Andrologia. 2016. doi:10.1111/and.12637.

    Google Scholar 

  64. Mancini A et al. Biochemical alterations in semen of varicocele patients: a review of the literature. Adv Urol. 2012;2012:903931. doi:10.1155/2012/903931.

    Article  PubMed  Google Scholar 

  65. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18:186–93. doi:10.4103/1008-682X.170441.

    Article  PubMed  Google Scholar 

  66. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nature reviews. Urology. 2012;9:678–90. doi:10.1038/nrurol.2012.197.

    Article  PubMed  CAS  Google Scholar 

  67. Allamaneni SS, Naughton CK, Sharma RK, Thomas Jr AJ, Agarwal A. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril. 2004;82:1684–6. doi:10.1016/j.fertnstert.2004.04.071.

    Article  PubMed  Google Scholar 

  68. Mostafa T, Anis T, Imam H, El-Nashar AR, Osman IA. Seminal reactive oxygen species-antioxidant relationship in fertile males with and without varicocele. Andrologia. 2009;41:125–9. doi:10.1111/j.1439-0272.2008.00900.x.

    Article  CAS  PubMed  Google Scholar 

  69. Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU international. 2008;101:1547–52. doi:10.1111/j.1464-410X.2008.07517.x.

    Article  CAS  PubMed  Google Scholar 

  70. Mehraban D et al. Comparison of nitric oxide concentration in seminal fluid between infertile patients with and without varicocele and normal fertile men. Urology journal. 2005;2:106–10.

    PubMed  Google Scholar 

  71. Xu Y, Xu QY, Yang BH, Zhu XM, Peng YF. Relationship of nitric oxide and nitric oxide synthase with varicocele infertility. Zhonghua nan ke xue. 2008;14:414–7.

    CAS  PubMed  Google Scholar 

  72. Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2010;94:1531–4. doi:10.1016/j.fertnstert.2009.12.039.

    Article  CAS  PubMed  Google Scholar 

  73. Mostafa T, Anis T, El Nashar A, Imam H, Osman I. Seminal plasma reactive oxygen species-antioxidants relationship with varicocele grade. Andrologia. 2012;44:66–9. doi:10.1111/j.1439-0272.2010.01111.x.

    Article  CAS  PubMed  Google Scholar 

  74. Mazzilli F, Rossi T, Marchesini M, Ronconi C, Dondero F. Superoxide anion in human semen related to seminal parameters and clinical aspects. Fertil Steril. 1994;62:862–8.

    Article  CAS  PubMed  Google Scholar 

  75. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nature reviews. Urology. 2013;10:26–37. doi:10.1038/nrurol.2012.198.

    Article  CAS  PubMed  Google Scholar 

  76. Mostafa T, Anis TH, El-Nashar A, Imam H, Othman IA. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24:261–5.

    Article  CAS  PubMed  Google Scholar 

  77. Hurtado de Catalfo GE, Ranieri-Casilla A, Marra FA, de Alaniz MJ, Marra CA. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int J Androl. 2007;30:519–30. doi:10.1111/j.1365-2605.2007.00753.x.

  78. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59:2–11. doi:10.1111/j.1600-0897.2007.00559.x.

    Article  CAS  PubMed  Google Scholar 

  79. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12:45. doi:10.1186/1477-7827-12-45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Athayde KS et al. Development of normal reference values for seminal reactive oxygen species and their correlation with leukocytes and semen parameters in a fertile population. J Androl. 2007;28:613–20. doi:10.2164/jandrol.106.001966.

    Article  CAS  PubMed  Google Scholar 

  81. Li Y, Stansbury KH, Zhu H, Trush MA. Biochemical characterization of lucigenin (Bis-N-methylacridinium) as a chemiluminescent probe for detecting intramitochondrial superoxide anion radical production. Biochem Biophys Res Commun. 1999;262:80–7. doi:10.1006/bbrc.1999.1174.

    Article  CAS  PubMed  Google Scholar 

  82. McKinney KA, Lewis SE, Thompson W. Reactive oxygen species generation in human sperm: luminol and lucigenin chemiluminescence probes. Arch Androl. 1996;36:119–25.

    Article  CAS  PubMed  Google Scholar 

  83. Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol. 1992;151:466–77. doi:10.1002/jcp.1041510305.

    Article  CAS  PubMed  Google Scholar 

  84. Aitken RJ, Baker MA, O’Bryan M. Shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. J Androl. 2004;25:455–65.

    Article  CAS  PubMed  Google Scholar 

  85. Guthrie HD, Welch GR. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa. Methods Mol Biol. 2010;594:163–71. doi:10.1007/978-1-60761-411-1_12.

    Article  CAS  PubMed  Google Scholar 

  86. Kefer JC, Agarwal A, Sabanegh E. Role of antioxidants in the treatment of male infertility. Int J Urol. 2009;16:449–57. doi:10.1111/j.1442-2042.2009.02280.x.

    Article  CAS  PubMed  Google Scholar 

  87. Shang XJ et al. Analysis of lipid peroxidative levels in seminal plasma of infertile men by high-performance liquid chromatography. Arch Androl. 2004;50:411–6.

    Article  CAS  PubMed  Google Scholar 

  88. Li K, Shang X, Chen Y. High-performance liquid chromatographic detection of lipid peroxidation in human seminal plasma and its application to male infertility. Clin Chim Acta. 2004;346:199–203. doi:10.1016/j.cccn.2004.03.013.

    Article  CAS  PubMed  Google Scholar 

  89. Aitken RJ, Harkiss D, Buckingham D. Relationship between iron-catalysed lipid peroxidation potential and human sperm function. J Reprod Fertil. 1993;98:257–65.

    Article  CAS  PubMed  Google Scholar 

  90. Tavilani H, Doosti M, Saeidi H. Malondialdehyde levels in sperm and seminal plasma of asthenozoospermic and its relationship with semen parameters. Clin Chim Acta. 2005;356:199–203. doi:10.1016/j.cccn.2005.01.017.

    Article  CAS  PubMed  Google Scholar 

  91. Nakamura H et al. Detection of oxidative stress in seminal plasma and fractionated sperm from subfertile male patients. Eur J Obstet Gynecol Reprod Biol. 2002;105:155–60.

    Article  CAS  PubMed  Google Scholar 

  92. Hsieh YY, Chang CC, Lin CS. Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci. 2006;2:23–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000;108:652–9.

    Article  CAS  PubMed  Google Scholar 

  94. Rael LT et al. Plasma oxidation-reduction potential and protein oxidation in traumatic brain injury. J Neurotrauma. 2009;26:1203–11. doi:10.1089/neu.2008-0816.

    Article  PubMed  Google Scholar 

  95. Rael LT et al. Oxidation-reduction potential and paraoxonase-arylesterase activity in trauma patients. Biochem Biophys Res Commun. 2007;361:561–5. doi:10.1016/j.bbrc.2007.07.078.

    Article  CAS  PubMed  Google Scholar 

  96. Stagos D et al. Application of a new oxidation-reduction potential assessment method in strenuous exercise-induced oxidative stress. Redox Rep. 2015;20:154–62. doi:10.1179/1351000214Y.0000000118.

    Article  CAS  PubMed  Google Scholar 

  97. Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril. 2016; doi:10.1016/j.fertnstert.2016.05.013.

    Google Scholar 

  98. Tremellen K. Oxidative stress and male infertility--a clinical perspective. Hum Reprod Update. 2008;14:243–58. doi:10.1093/humupd/dmn004.

    Article  CAS  PubMed  Google Scholar 

  99. Keskes-Ammar L et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl. 2003;49:83–94.

    Article  CAS  PubMed  Google Scholar 

  100. Kao SH et al. Increase of oxidative stress in human sperm with lower motility. Fertil Steril. 2008;89:1183–90. doi:10.1016/j.fertnstert.2007.05.029.

    Article  CAS  PubMed  Google Scholar 

  101. Zorn B, Sesek-Briski A, Osredkar J, Meden-Vrtovec H. Semen polymorphonuclear neutrophil leukocyte elastase as a diagnostic and prognostic marker of genital tract inflammation--a review. Clin Chem Lab Med. 2003;41:2–12. doi:10.1515/CCLM.2003.002.

    Article  CAS  PubMed  Google Scholar 

  102. Kopa Z, Wenzel J, Papp GK, Haidl G. Role of granulocyte elastase and interleukin-6 in the diagnosis of male genital tract inflammation. Andrologia. 2005;37:188–94. doi:10.1111/j.1439-0272.2005.00676.x.

    Article  CAS  PubMed  Google Scholar 

  103. Dandekar SP, Nadkarni GD, Kulkarni VS, Punekar S. Lipid peroxidation and antioxidant enzymes in male infertility. J Postgrad Med. 2002;48:186–9. ; discussion 189–90.

    CAS  PubMed  Google Scholar 

  104. Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl. 2008;29:41–6. doi:10.2164/jandrol.107.003046.

    Article  CAS  PubMed  Google Scholar 

  105. Siciliano L et al. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J Androl. 2001;22:798–803.

    CAS  PubMed  Google Scholar 

  106. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online. 2014;28:684–703. doi:10.1016/j.rbmo.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  107. Weidner W, Krause W, Ludwig M. Relevance of male accessory gland infection for subsequent fertility with special focus on prostatitis. Hum Reprod Update. 1999;5:421–32.

    Article  CAS  PubMed  Google Scholar 

  108. Lackner JE, Lakovic E, Waldhor T, Schatzl G, Marberger M. Spontaneous variation of leukocytospermia in asymptomatic infertile males. Fertil Steril. 2008;90:1757–60. doi:10.1016/j.fertnstert.2007.08.041.

    Article  PubMed  Google Scholar 

  109. Gambera L et al. Sperm quality and pregnancy rate after COX-2 inhibitor therapy of infertile males with abacterial leukocytospermia. Hum Reprod. 2007;22:1047–51. doi:10.1093/humrep/del490.

    Article  CAS  PubMed  Google Scholar 

  110. Skau PA, Folstad I. Do bacterial infections cause reduced ejaculatequality? A meta-analysis of antibiotic treatment of male infertility. Behav Ecol. 2003;14:40–7.

    Article  Google Scholar 

  111. Majzoub A et al. Does the number of veins ligated during varicococele surgery influence post-operative semen and hormone results? Andrology. 2016; doi:10.1111/andr.12226.

    PubMed  Google Scholar 

  112. Zini A, Al-Hathal N. Antioxidant therapy in male infertility: fact or fiction? Asian J Androl. 2011;13:374–81. doi:10.1038/aja.2010.182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Showell MG, et al. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014;CD007411. doi:10.1002/14651858.CD007411.pub3.

  114. Ross C et al. A systematic review of the effect of oral antioxidants on male infertility. Reprod Biomed Online. 2010;20:711–23. doi:10.1016/j.rbmo.2010.03.008.

    Article  CAS  PubMed  Google Scholar 

  115. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26:1628–40. doi:10.1093/humrep/der132.

    Article  PubMed  Google Scholar 

  116. Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13:43–52. doi:10.1038/aja.2010.76.

    Article  CAS  PubMed  Google Scholar 

  117. Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal. 2010;13:833–75. doi:10.1089/ars.2009.3044.

    Article  CAS  PubMed  Google Scholar 

  118. Brewer AC, Mustafi SB, Murray TV, Rajasekaran NS, Benjamin IJ. Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal. 2013;18:1114–27. doi:10.1089/ars.2012.4914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lipinski B. Evidence in support of a concept of reductive stress. Br J Nutr. 2002;87:93–4; discussion 94. doi:10.1079/BJN2001435.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, A., Majzoub, A. (2017). Free Radicals in Andrology. In: Balercia, G., Gandini, L., Lenzi, A., Lombardo, F. (eds) Antioxidants in Andrology. Trends in Andrology and Sexual Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-41749-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41749-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41747-9

  • Online ISBN: 978-3-319-41749-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics