Skip to main content

Power Density Dilution Due to the Interface of the Isotope with the Transducer

  • Chapter
  • First Online:
Nuclear Batteries and Radioisotopes

Part of the book series: Lecture Notes in Energy ((LNEN,volume 56))

  • 1330 Accesses

Abstract

In chapter 4, definitions for various types of dilution factors for a nuclear battery are discussed. The average atomic density of the radioisotope in a nuclear battery cell is described and a relationship between the average atomic density and dilution factor are derived. The dilution factor will impact the minimum scale and the power density of the battery. It is an important parameter that is used in the assessment of nuclear battery designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prelas MA (2016) Nuclear-Pumped Lasers. Springer International Publishing, Cham

    Google Scholar 

  2. Chung A, Prelas M (1984) Charged particle spectra from U-235 and B-10 micropellets and slab coatings. Laser Part Beams 2:201–211

    Article  Google Scholar 

  3. Chung AK, Prelas MA (1984) The transport of heavy charged particles in a cylindrical nuclear-pumped plasma. Nucl Sci Engg 86:267–274

    Google Scholar 

  4. Platzmann RL (1961) Total ionization in gases by high energy particles: an appraisal of our understanding. Int J Appl Rad Isot 10:116

    Article  Google Scholar 

  5. Prelas MA (2016) Title, unpublished|

    Google Scholar 

  6. Prelas M, Boody F (1982) Charged particle transport in Uranium Micropellets. In: presented at the IEEE International Conference on Plasma Science, Ottawa, Ontario

    Google Scholar 

  7. Prelas MA, Boody FP, Miley GH, Kunze J (1988) Nuclear driven flashlamps. Laser Part Beams 6:25–62

    Article  Google Scholar 

  8. Lee MYJJ, Simones MMP, Kennedy JC, Us H, Makarewicz MPF, Neher DJA et al (2014) Thorium fuel cycle for a molten salt reactor: State of Missouri feasibility study. ASEE Annu Conference. IN, Indianappolis, p 28

    Google Scholar 

  9. Tsang FY-H, Juergens TD, Harker YD, Kwok KS, Newman N, Ploger SA (2012) Nuclear voltaic cell, ed: Google Patents

    Google Scholar 

  10. Wacharasindhu T, Jae Wan K, Meier DE, Robertson JD (2009) Liquid-semiconductor-based micro power source using radioisotope energy conversion. In: Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International, pp 656–659

    Google Scholar 

  11. Patel JU, Fleurial J-P, Snyder GJ (2006) Alpha-voltaic sources using liquid Ga as conversion medium. ed. NASA: NASA Tech Briefs

    Google Scholar 

  12. Boody FP, Prelas MA, Anderson JH, Nagalingam SJS, Miley GH (1978) Progress in nuclear-pumped lasers. In: Billman K (ed) Radiation energy conversion in space, vol 61. ed: AIAA, pp. 379–410

    Google Scholar 

  13. Prelas M, Charlson E, Charlson E, Meese J, Popovici G, Stacy T (1993) Diamond photovoltaic energy conversion. In: Yoshikawa M, Murakawa M, Tzeng Y, Yarbrough WA (ed) Second International Conference on the Application of Diamond Films and Related Materials. MY Tokyo, pp 5–12

    Google Scholar 

  14. Chung AK, Prelas MA (1987) Sensitivity analysis of Xe2* excimer fluorescence generated from charged particle excitation. Laser Part Beams 5:125–132

    Article  Google Scholar 

  15. Friedländer G, Kennedy JW (1955) Nuclear and Radiochemistry. Wiley

    Google Scholar 

  16. Friedlander G (1981) Nuclear and radiochemistry. Wiley, New York

    Google Scholar 

  17. Prelas MA, Boody FP, Miley GH, Kunze JF (1988) Nuclear driven flashlamps. Laser Part Beams 6:25–62

    Article  Google Scholar 

  18. Prelas MA, Loyalka SK (1981) A review of the utilization of energetic ions for the production of excited atomic and molecular states and chemical synthesis. In: Progress in Nuclear Energy, vol 8, pp 35–52

    Google Scholar 

  19. Eckstrom DJ, Lorents DC, Nakano HH, Rothem T, Betts JA, Lainhart ME (1979) The Performance of Xe2* as a photolytic driver at low e-beam excitation rates. In: Topical Meeting on Excimer Lasers

    Google Scholar 

  20. Walters RA, Cox JD, Schneider RT (1980) Trans Am Nucl Soc 34:810

    Google Scholar 

  21. Prelas MA (1985) Excimer Research Using the University of Missouri Research Reactor’s Nuclear-Pumping Facility. National Science Foundation

    Google Scholar 

  22. Baldwin GC (1981) On vacuum ultraviolet light production by nuclear irra-diation of liquid and gaseous Xenon. Unpublished Report, Los Alamos Na-tional Laboratory

    Google Scholar 

  23. Miley GH, Boody FP, Nagalingham SJS, Prelas MA (1978) Production of XeF(B-X) by Nuclear-Pumping

    Google Scholar 

  24. Boody FP, Miley GH (unpublished) Title

    Google Scholar 

  25. Prelas M, Popovici G, Khasawinah S, Sung J (1995) Wide band-gap photovoltaics. In: Wide band gap electronic materials. Springer, ed, pp 463–474

    Google Scholar 

  26. Prelas MA, Hora HP (1994) Radioactivity-free efficient nuclear battery. Germany Patent

    Google Scholar 

  27. Mencin DJ, Prelas MA (1992) Gaseous like Uranium reactors at low temperatures using C60 Cages. In: Proceedings of Nuclear Technologies for Space Exploration, American Nuclear Society, August 1992

    Google Scholar 

  28. Prelas MA, Weaver CL, Watermann ML, Lukosi ED, Schott RJ, Wisniewski DA (2014) A review of nuclear batteries. In: Progress in Nuclear Energy, vol 75, pp. 117–148, August 2014

    Google Scholar 

  29. Prelàs MA, Romero J, Pearson E (1982) A critical review of fusion systems for radiolytic conversionof inorganics to gaseous fuels. Nucl Technol Fus 2:143

    Google Scholar 

  30. Kim H, Kwon JW (2014) Plasmon-assisted radiolytic energy conversion in aqueous solutions. In: Nature science reports, vol. 4

    Google Scholar 

  31. U.S.N.R. Commission (1991) NRC Regulations 10 CFR Part 20, ed. US Nuclear Regulatory Commission

    Google Scholar 

  32. Syed A (2012) Modeling the energy deposition of alpha particles emitted from Po-210 source on Silicon Carbide for possible nuclear battery and laser pump applications. M.Sc., Nuclear Science & Engineering Institute, University of Missouri—Columbia, Columbia, MO

    Google Scholar 

  33. Sze SM, Lee M-K (2012) Semiconductor devices: physics and technology, 3rd ed. Wiley

    Google Scholar 

  34. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM–The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sect B 268:1818–1823

    Article  Google Scholar 

  35. Oh K, Prelas MA, Rothenberger JB, Lukosi ED, Jeong J, Montenegro DE et al (2012) Theoretical maximum efficiencies of optimized slab and spherical betavoltaic systems utilizing Sulfur-35, Strontium-90, and Yttrium-90. Nucl Technol 179:9

    Google Scholar 

  36. Bernard S, Slaback Jr Lester A, Kent BB (1998) Handbook of health physics and radiological health. Williams & Wilkins, ed: Baltimore

    Google Scholar 

  37. Oh K (2011) Modeling and maximum theoretical efficiencies of linearly graded alphavoltaic and betavoltaltaic cells. M.Sc., Nuclear Science & Engineering Institute, University of Missouri, University of Missouri—Columbia

    Google Scholar 

  38. Doolittle WA, Rohatgi A, Ahrenkiel R, Levi D, Augustine G, Hopkins RH (1997) Understanding the role of defects in limiting the minority carrier lifetime in Sic. In: MRS Online Proceedings Library, vol. 483, pp. null-null

    Google Scholar 

  39. Seely JF, Kjornrattanawanich B, Holland GE, Korde R (2005) Response of a SiC photodiode to extreme ultraviolet through visible radiation. Opt Lett 30:3120–3122

    Google Scholar 

  40. Neamen DA (2003) Semiconductor physics and devices. McGraw Hill

    Google Scholar 

  41. Savtchouk A, Oborina E, Hoff A, Lagowski J (2004) Non-contact doping profiling in epitaxial SiC. In: Materials Science Forum, pp 755–758

    Google Scholar 

  42. Huang M, Goldsman N, Chang C-H, Mayergoyz I, McGarrity JM, Woolard D (1998) Determining 4H silicon carbide electronic properties through combined use of device simulation and metal–semiconductor field-effect-transistor terminal characteristics. J Appl Phys 84:2065–2070

    Google Scholar 

  43. Latreche A, Ouennoughi Z (2013) Modified Airy function method modelling of tunnelling current for Schottky barrier diodes on silicon carbide. Semicond Sci Technol 28:105003

    Article  Google Scholar 

  44. Östlund L (2011) Fabrication and characterization of micro and nano scale SiC UV Photodetectors. In Student Thesis, Masters of Science, Royal_Institute_of_Technology, Ed., ed. Stockholm, p. 74

    Google Scholar 

  45. Melnikov SP, Sizov AN, Sinyanskii AA, Miley GH (2015) Lasers with nuclear pumping. Springer, New York

    Book  Google Scholar 

  46. Chung AK, Perelas MA (1984) The transport of heavy charged particles in a cylindrical nuclear-pumped plasma. Nucl. Sci. Eng. (United States) 86:3 Medium: X; Size: pp 267–274

    Google Scholar 

  47. Prelas MA (2013) Micro-scale power source, United States Patent 8552616. USA Patent (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Prelas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prelas, M., Boraas, M., De La Torre Aguilar, F., Seelig, JD., Tchakoua Tchouaso, M., Wisniewski, D. (2016). Power Density Dilution Due to the Interface of the Isotope with the Transducer. In: Nuclear Batteries and Radioisotopes. Lecture Notes in Energy, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-41724-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41724-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41723-3

  • Online ISBN: 978-3-319-41724-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics