Skip to main content

Understanding Human Mobility with Big Data

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9580)

Abstract

The paper illustrates basic methods of mobility data mining, designed to extract from the big mobility data the patterns of collective movement behavior, i.e., discover the subgroups of travelers characterized by a common purpose, profiles of individual movement activity, i.e., characterize the routine mobility of each traveler. We illustrate a number of concrete case studies where mobility data mining is put at work to create powerful analytical services for policy makers, businesses, public administrations, and individual citizens.

Keywords

  • Mobility data mining
  • Big data analytics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41706-6_10
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-41706-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. 1.

    An high resolution version of the graphics is available online at http://kdd.isti.cnr.it/uma.

References

  1. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Identifying users profiles from mobile calls habits. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp 2012, pp. 17–24. ACM, New York (2012)

    Google Scholar 

  2. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 20(5), 695–719 (2011)

    CrossRef  Google Scholar 

  3. Giannotti, F., Pedreschi, D. (eds.): Mobility, Data Mining and Privacy - Geographic Knowledge Discovery. Springer, Heidelberg (2008)

    Google Scholar 

  4. Nanni, M., Trasarti, R., Furletti, B., Gabrielli, L., Mede, P.V.D., Bruijn, J.D., de Romph, E., Bruil, G.: MP4-A project: mobility planning for Africa. In: In D4D Challenge @ 3rd Conference on the Analysis of Mobile Phone datasets (NetMob 2013), Cambridge, USA (2013)

    Google Scholar 

  5. Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D., Giannotti, F.: Understanding the patterns of car travel. Eur. Phys. J. Spec. Top. 215(1), 61–73 (2013)

    CrossRef  Google Scholar 

  6. Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., Giannotti, F.: Discovering the geographical borders of human mobility. KI - Künstliche Intelligenz 26(3), 253–260 (2012)

    CrossRef  Google Scholar 

  7. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: Apté, C., Ghosh, J., Smyth, P. (eds.) Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1190–1198. ACM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Rinzivillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giannotti, F., Gabrielli, L., Pedreschi, D., Rinzivillo, S. (2016). Understanding Human Mobility with Big Data. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41706-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41705-9

  • Online ISBN: 978-3-319-41706-6

  • eBook Packages: Computer ScienceComputer Science (R0)