Skip to main content

Peripheral Innervation of Neuroendocrine-Immune System: The Challenges to Change a Physiological Paradigm

  • Chapter
  • First Online:
Ma Vie en Noir

Part of the book series: Springer Biographies ((SPRINGERBIOGS))

  • 483 Accesses

Abstract

Based on the idea that the only functionally relevant innervation of the pineal came from the superior cervical ganglion (SCG), at one time (and still today) pinealectomy and the removal of the SCG (called a superior cervical ganglionectomy) were considered interchangeably as acting via the suppression of pineal melatonin synthesis. However, the neuroendocrine outcome of these procedures is not identical. The neuroendocrine relevance of the SCG is underlined by the number of endocrine, neuroendocrine, and immune structures found in its territory, including, in addition to the pineal, the thyroid and parathyroid glands, carotid body, the pituitary gland, median eminence, and choroid plexus. Studies supporting the existence of such a peripheral channel of communication in the hypothalamic–pituitary, thyroid, and parathyroid responses to stress are reviewed. The final part of the chapter deals with the submaxillary lymph nodes as an experimental model to assess the participation of the autonomic nervous system and melatonin in circadian modulation of the immune response. The clinical implications of the biphasic immune effect of melatonin, that is, increasing immune responses in basal or immunodepressed conditions and decreasing them in inflammatory disorders, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiesemann C. Regnier de Graaf (1641–1673). Pathologe. 1991;12:352–3.

    CAS  PubMed  Google Scholar 

  2. Marshall FH, Verney EB. The occurrence of ovulation and pseudo-pregnancy in the rabbit as a result of central nervous stimulation. J Physiol. 1936;86:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellerby CW. The endocrine factors concerned in the control of the ovarian cycle: Xenopus laevis as a test animal. Biochem J. 1933;27:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Donovan BT. Geoffrey W. Harris, 1913–1971. Neuroendocrinology. 1972;10:65–70.

    Article  CAS  PubMed  Google Scholar 

  5. Cardinali DP, Faigon MR, Scacchi P, Moguilevsky J. Failure of melatonin to increase serum prolactin levels in ovariectomized rats subjected to superior cervical ganglionectomy or pinelaectomy. J Endocrinol. 1979;82:315–9.

    Article  CAS  PubMed  Google Scholar 

  6. Gejman PV, Cardinali DP, Finkielman S, Nahmod VE. Changes in drinking behavior caused by superior cervical ganglionectomy and pinealectomy in rats. J Auton Nerv Syst. 1981;4:249–59.

    Article  CAS  PubMed  Google Scholar 

  7. Cardinali DP, Romeo HE. The autonomic nervous system of the cervical region as a channel of neuroendocrine communication. Front Neuroendocrinol. 1991;12:278–97.

    Google Scholar 

  8. Cannon WB. Pharmacological injections and physiological inferences. Science. 1929;70:500–1.

    Article  CAS  PubMed  Google Scholar 

  9. Friedgood HB. Cortico-adrenal and neural effects on gonadotropic activity of the pituitary. Science. 1937;86:84–5.

    Article  CAS  PubMed  Google Scholar 

  10. Sanz NR, Gomez-Dumm GL, Perec CJ, Stefano FJ. Electron microscopic evidence that bretylium and pargyline delay adrenergic nerve degeneration after sympathectomy of the pineal gland. Naunyn Schmiedebergs Arch Pharmacol. 1982;319:136–9.

    Article  CAS  PubMed  Google Scholar 

  11. Porter JC, Smith KR. Collection of hypophysial stalk blood in rats. Endocrinology. 1967;81:1182–5.

    Article  CAS  PubMed  Google Scholar 

  12. Coates PJ. The distribution of immunoreactive corticotrophin-releasing factor in the human pituitary stalk. Acta Endocrinol (Copenh). 1985;109:433–9.

    CAS  Google Scholar 

  13. Bjorklund A, Moore RY, Nobin A, Stenevi U. The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res. 1973;51:171–91.

    Article  CAS  PubMed  Google Scholar 

  14. Cardinali DP, Vacas MI, Fortis AL, Stefano FJ. Superior cervical ganglionectomy depresses norepinephrine uptake, increases the density of a-drenoceptor sites, and induces supersensitivity to adrenergic drugs in rat medial basal hypothalamus. Neuroendocrinology. 1981;33:199–206.

    Article  CAS  PubMed  Google Scholar 

  15. Chiocchio SR, Cardinali DP, Vacas MI, Tramezzani JH. Acute superior cervical ganglionectomy depresses the postcastration rise of gonadotropins in male rats. Brain Res. 1984;309:354–6.

    Article  CAS  PubMed  Google Scholar 

  16. Nicholson G, Greeley G, Humm J, Youngblood W, Kizer JS. Lack of effect of noradrenergic denervation of the hypothalamus and medial preoptic area on the feedback regulation of gonadotropin secretion and the estrous cycle of the rat. Endocrinology. 1978;103:559–66.

    Article  CAS  PubMed  Google Scholar 

  17. Cardinali DP, Vacas MI, Gejman PV. The sympathetic superior cervical ganglia as peripheral neuroendocrine centers. J Neural Transm. 1981;52:1–21.

    Article  CAS  PubMed  Google Scholar 

  18. Cardinali DP, Stern JE. Peripheral neuroendocrinology of the cervical autonomic nervous system. Braz J Med Biol Res. 1994;27:573–99.

    CAS  PubMed  Google Scholar 

  19. Gejman PV, Cardinali DP. Hormone effects on muscarinic cholinergic binding in bovine and rat sympathetic superior cervical ganglia. Life Sci. 1983;32:965–72.

    Article  CAS  PubMed  Google Scholar 

  20. Vacas MI, Cardinali DP. Effects of castration and reproductive hormones on pineal serotonin metabolism in rats. Neuroendocrinology. 1979;28:187–95.

    Article  CAS  PubMed  Google Scholar 

  21. Landa ME, González Burgos G, Cardinali DP. In vitro effects of thyroxine on cholinergic neurotransmission in rat sympathetic superior cervical ganglion. Neuroendocrinology. 1991;54:552–8.

    Article  CAS  PubMed  Google Scholar 

  22. Stern JE, Cardinali DP. Effect of parathyroid hormone and calcitonin on acetylcholine release in rat sympathetic superior cervical ganglion. Brain Res. 1994;650:267–74.

    Article  CAS  PubMed  Google Scholar 

  23. Cardinali DP, Romeo HE, Ochatt C, Moguilevsky J. Estrous cycle delay and inhibition of gonadotropin and prolactin release during sympathetic nerve degeneration after superior cervical ganglionectomy of rats. Neuroendocrinology. 1989;50:59–65.

    Article  CAS  PubMed  Google Scholar 

  24. Rossano GL, Stern JE, Justo SN, Szwarcfarb B, Moguilevsky J, Cardinali DP. Peripheral autonomic regulation of gonadotropin secretion in pubertal rats. Inhibition of post-castration rise of gonadotropins during wallerian degeneration after sympathetic superior cervical ganglionectomy. J Neural Transm. 1994;96:41–59.

    Article  CAS  Google Scholar 

  25. Romeo HE, Arias P, Szwarcfarb B, Moguilevsky J, Cardinali DP. Hypothalamic luteinizing hormone-releasing hormone content and serum luteinizing hormone levels in male rats during wallerian degeneration of sympathetic nerve terminals after superior cervical ganglionectomy. J Neural Transm. 1991;85:41–9.

    Article  CAS  Google Scholar 

  26. Cardinali DP, Pisarev MA, Barontini M, Juvenal GJ, Boado RJ, Vacas MI. Efferent neuroendocrine pathways of sympathetic superior cervical ganglia. Early depression of the pituitary-thyroid axis after ganglionectomy. Neuroendocrinology. 1982;35:248–54.

    Article  CAS  PubMed  Google Scholar 

  27. Cardinali DP, Esquifino AI, Arce A, Vara E, Ariznavarreta C, Tresguerres JAF. Changes in serum growth hormone and prolactin levels, and in hypothalamic growth hormone-releasing hormone, thyrotropin- releasing hormone and somatostatin content, after superior cervical sympathectomy in rats. Neuroendocrinology. 1994;59:42–8.

    Article  CAS  PubMed  Google Scholar 

  28. Romeo HE, Spinedi E, Vacas MI, Estivariz F, Cardinali DP. Increase in adrenocorticotropin release during wallerian degeneration of peripheral sympathetic neurons after superior cervical ganglionectomy of rats. Neuroendocrinology. 1990;51:213–8.

    Article  CAS  PubMed  Google Scholar 

  29. Romeo HE, Spinedi E, Esquifino AI, Estivariz F, Cardinali DP. Anterograde nerve degeneration after superior cervical ganglionectomy co-exists with a decrease of arginine vasopressin release in rats. Neuroendocrinology. 1991;54:346–52.

    Article  CAS  PubMed  Google Scholar 

  30. Vacas MI, Keller Sarmiento MI, Pereyra EN, Cardinali DP. Early changes in cAMP and melatonin levels of the rat pineal gland after superior cervical ganglionectomy. Neurosci Lett. 1982;4:267–71.

    CAS  Google Scholar 

  31. Romeo HE, Cardinali DP, Boado RJ, Zaninovich AA. Effect of superior cervical ganglionectomy on thyroidectomy- induced increase of serum TSH and on survival of rats in a cold environment. Neuroendocrinol Lett. 1986;8:269–74.

    CAS  Google Scholar 

  32. Martín AI, López-Calderón A, Tresguerres JAF, González-Quijano MI, Cardinali DP. Restraint-induced changes in serum luteinizing hormone, prolactin, growth hormone and corticosterone levels in rats: Effect of superior cervical ganglionectomy. Neuroendocrinology. 1995;61:173–9.

    Article  PubMed  Google Scholar 

  33. Lee S, Farwell AP. Euthyroid sick syndrome. Compr Physiol. 2016;6:1071–80.

    Article  PubMed  Google Scholar 

  34. Boado RJ, Romeo HE, Chuluyan HE, Callao L, Cardinali DP, Zaninovich AA. Evidence suggesting that the sympathetic nervous system mediates thyroidal depression in turpentine-nduced nonthyroidal illness syndrome. Neuroendocrinology. 1991;53:360–4.

    Article  CAS  PubMed  Google Scholar 

  35. Bagaev V, Aleksandrov V. Visceral-related area in the rat insular cortex. Auton Neurosci. 2006;125:16–21.

    Article  CAS  PubMed  Google Scholar 

  36. Ahren B. Thyroid neuroendocrinology: neural regulation of thyroid hormone secretion. Endocr Rev. 1986;7:149–55.

    Article  CAS  PubMed  Google Scholar 

  37. Pisarev MA, Cardinali DP, Juvenal GJ, Vacas MI, Barontini M, Boado RJ. Role of the sympathetic nervous system in the control of the goitrogenic response in the rat. Endocrinology. 1981;109:2202–7.

    Article  CAS  PubMed  Google Scholar 

  38. Romeo HE, Boado RJ, Cardinali DP. Role of the sympathetic nervous system in the control of thyroid compensatory growth of normal and hypophysectomized rats. Neuroendocrinology. 1985;40:309–15.

    Article  CAS  PubMed  Google Scholar 

  39. Ahren B, Hedner P. Mechanism for the inhibitory action of 2-deoxy-glucose on thyroid hormone secretion in the mouse. Neuroendocrinology. 1989;49:471–5.

    Article  CAS  PubMed  Google Scholar 

  40. Romeo HE, Diaz MC, Ceppi J, Zaninovich AA, Cardinali DP. Effect of inferior laryngeal nerve section on thyroid function in rats. Endocrinology. 1988;122:2527–32.

    Article  CAS  PubMed  Google Scholar 

  41. Melander A, Ericson LE, Sundler F, Westgren U. Intrathyroidal amines in the regulation of thyroid activity. Rev Physiol Biochem Pharmacol. 1975;73:39–71.

    CAS  PubMed  Google Scholar 

  42. Cardinali DP, Sartorio G, Ladizesky MG, Guillen CE, Soto RJ. Changes in calcitonin release during sympathetic nerve degeneration after superior cervical ganglionectomy of rats. Neuroendocrinology. 1986;43:498–503.

    Article  CAS  PubMed  Google Scholar 

  43. Stern JE, Ladizesky MG, Keller Sarmiento MI, Cardinali DP. Involvement of the cervical sympathetic nervous system in the changes of calcium homeostasis during turpentine oil-induced stress in rats. Neuroendocrinology. 1993;57:381–7.

    Article  CAS  PubMed  Google Scholar 

  44. Stern JE, Guinjoan SMA, Cardinali DP. Correlation between serum and urinary calcium levels and psychopathology in patients with affective disorders. J Neural Transm. 1996;103:509–13.

    Article  CAS  PubMed  Google Scholar 

  45. Stern JE, Sarmiento MI, Cardinali DP. Parasympathetic control of parathyroid hormone and calcitonin secretion in rats. J Auton Nerv Syst. 1994;48:45–53.

    Article  CAS  PubMed  Google Scholar 

  46. Cardinali DP, Ladizesky MG. Changes in parathyroid hormone and calcium levels after superior cervical ganglionectomy of rats. Neuroendocrinology. 1985;40:291–6.

    Article  CAS  PubMed  Google Scholar 

  47. Stern JE, Ladizesky MG, Keller Sarmiento MI, Cardinali DP. Effect of sympathetic superior cervical ganglion ablation on parathyroid hormone and calcium levels in the rat. Neuroendocrinol Lett. 1993;15:221–6.

    Google Scholar 

  48. Stern JE, Cardinali DP. Effect of parathyroid hormone and calcitonin on cholinergic markers in rat parathyroid gland. J Neuroendocrinol. 1995;7:689–93.

    Article  CAS  PubMed  Google Scholar 

  49. Besedovsky HO, del Rey A, Sorkin E, Da Prada M, Keller HH. Immunoregulation mediated by the sympathetic nervous system. Cell Immunol. 1979;48:346–55.

    Article  CAS  PubMed  Google Scholar 

  50. Alito AE, Romeo HE, Baler R, Chuluyan HE, Braun M, Cardinali DP. Autonomic nervous system regulation of murine responses as assessed by local surgical sympathetic and parasympathetic denervation. Acta Physiol Pharmacol Latinoamer. 1987;37:305–19.

    CAS  Google Scholar 

  51. Cannon WB. Organization for physiological homeostasis. Physiol Rev. 1929;9:399–431.

    Google Scholar 

  52. Cardinali DP. Neurociencia aplicada. Sus fundamentos. Buenos Aires: Editorial Médica Panamericana; 2007.

    Google Scholar 

  53. Cardinali DP, Esquifino AI. Neuroimmunoendocrinology of the cervical autonomic nervous system. Biomed Rev. 1998;9:47–59.

    Article  CAS  Google Scholar 

  54. Cardinali DP, Cutrera RA, Esquifino AI. Psychoimmune neuroendocrine integrative mechanisms revisited. Biol Signals Recept. 2000;9:215–30.

    Article  CAS  PubMed  Google Scholar 

  55. Esquifino AI, Cardinali DP. Local regulation of the immune response by the autonomic nervous system. Neuroimmunomodulation. 1994;1:265–73.

    Article  CAS  PubMed  Google Scholar 

  56. Cardinali DP, Cutrera R, Castrillon P, Esquifino AI. Diurnal rhythms in ornithine decarboxylase activity and norepinephrine and acetylcholine synthesis and acetylcholine synthesis of rat submaxillary lymph nodes: effect of pinealectomy, superior cervical ganglionectomy and melatonin replacement. Neuroimmunomodulation. 1996;3:102–11.

    Article  CAS  PubMed  Google Scholar 

  57. Cardinali DP, Della Maggiore V, Selgas L, Esquifino AI. Diurnal rhythm in ornithine decarboxylase activity and noradrenergic and cholinergic markers in rat submaxillary lymph nodes. Brain Res. 1996;711:153–62.

    Article  CAS  PubMed  Google Scholar 

  58. Cardinali DP, Cutrera RA, Bonacho MG, Esquifino AI. Effect of pinealectomy, superior cervical ganglionectomy, or melatonin treatment on 24-hour rhythms in ornithine decarboxylase and tyrosine hydroxylase activities of rat spleen. J Pineal Res. 1997;22:210–20.

    Article  CAS  PubMed  Google Scholar 

  59. Carrillo-Vico A, Lardone PJ, Alvarez-Sanchez N, Rodriguez-Rodriguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci. 2013;14:8638–83.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cardinali DP, Esquifino AI, Srinivasan V, Pandi-Perumal SR. Melatonin and the immune system in aging. Neuroimmunomodulation. 2008;15:272–8.

    Article  CAS  PubMed  Google Scholar 

  61. Brusco LI, García-Bonacho M, Esquifino AI, Cardinali DP. Diurnal rhythms in norepinephrine and acetylcholine synthesis of sympathetic ganglia, heart and adrenals of aging rats: effect of melatonin. J Auton Nerv Syst. 1998;74:49–61.

    Article  CAS  PubMed  Google Scholar 

  62. Maestroni GJ, Conti A, Pierpaoli W. Role of the pineal gland in immunity. Circadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J Neuroimmunol. 1986;13:19–30.

    Article  CAS  PubMed  Google Scholar 

  63. Castrillon PO, Esquifino AI, Varas A, Zapata A, Cutrera RA, Cardinali DP. Effect of melatonin treatment on 24-h variations in responses to mitogens and lymphocyte subset populations in rat submaxillary lymph nodes. J Neuroendocrinol. 2000;12:758–65.

    Article  CAS  PubMed  Google Scholar 

  64. Srinivasan V, Pandi-Perumal SR, Spence DW, Kato H, Cardinali DP. Melatonin in septic shock: some recent concepts. J Crit Care. 2010;25:656.

    Article  PubMed  Google Scholar 

  65. Gitto E, Marseglia L, Manti S, D’Angelo G, Barberi I, Salpietro C, Reiter RJ. Protective role of melatonin in neonatal diseases. Oxid Med Cell Longev. 2013;2013:980374.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Marseglia L, D’Angelo G, Manti S, Aversa S, Arrigo T, Reiter RJ, Gitto E. Analgesic, anxiolytic and anaesthetic effects of melatonin: new potential uses in pediatrics. Int J Mol Sci. 2015;16:1209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mistraletti G, Umbrello M, Sabbatini G, Miori S, Taverna M, Cerri B, Mantovani ES, Formenti P, Spanu P, D’agostino A, Salini S, Morabito A, Fraschini F, Reiter RJ, Iapichino G. Melatonin reduces the need for sedation in ICU patients. A randomized controlled trial. Minerva Anestesiol. 2015;81(12):1298–310.

    CAS  PubMed  Google Scholar 

  68. Kartha LB, Chandrashekar L, Rajappa M, Menon V, Thappa DM, Ananthanarayanan PH. Serum melatonin levels in psoriasis and associated depressive symptoms. Clin Chem Lab Med. 2014;52:e123–5.

    Article  CAS  PubMed  Google Scholar 

  69. Wu CC, Lu KC, Lin GJ, Hsieh HY, Chu P, Lin SH, Sytwu HK. Melatonin enhances endogenous heme oxygenase-1 and represses immune responses to ameliorate experimental murine membranous nephropathy. J Pineal Res. 2012;52:460–9.

    Article  CAS  PubMed  Google Scholar 

  70. Maestroni GJ, Cardinali DP, Esquifino AI, Pandi-Perumal SR. Does melatonin play a disease-promoting role in rheumatoid arthritis? J Neuroimmunol. 2005;158:106–11.

    Article  CAS  PubMed  Google Scholar 

  71. Forrest CM, Mackay GM, Stoy N, Stone TW, Darlington LG. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br J Clin Pharmacol. 2007;64:517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alvarez-Sanchez N, Cruz-Chamorro I, Lopez-Gonzalez A, Utrilla JC, Fernandez-Santos JM, Martinez-Lopez A, Lardone PJ, Guerrero JM, Carrillo-Vico A. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance. Brain Behav Immun. 2015;50:101–14.

    Article  CAS  PubMed  Google Scholar 

  73. Farez MF, Mascanfroni ID, Mendez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, Balbuena Aguirre ME, Patel B, Ysrraelit MC, Zhu C, Kuchroo VK, Rabinovich GA, Quintana FJ, Correale J. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell. 2015;162:1338–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roostaei T, Sahraian MA, Hajeaghaee S, Gholipour T, Togha M, Siroos B, Mansouri S, Mohammadshirazi Z, Aghazadeh AM, Harirchian MH. Impact of melatonin on motor, cognitive and neuroimaging indices in patients with multiple sclerosis. Iran J Allergy Asthma Immunol. 2015;14:589–95.

    PubMed  Google Scholar 

  75. López-González A, Álvarez-Sánchez N, Lardone PJ, Cruz-Chamorro I, Martinez-López A, Guerrero JM, Reiter RJ, Carrillo-Vico A. Melatonin treatment improves primary progressive multiple sclerosis: a case report. J Pineal Res. 2015;58:173–7.

    Article  PubMed  Google Scholar 

  76. Medrano-Campillo P, Sarmiento-Soto H, Álvarez-Sánchez N, Álvarez-Rios AI, Guerrero JM, Rodriguez-Prieto I, Castillo-Palma MJ, Lardone PJ, Carrillo-Vico A. Evaluation of the immunomodulatory effect of melatonin on the T-cell response in peripheral blood from systemic lupus erythematosus patients. J Pineal Res. 2015;58:219–26.

    Article  CAS  PubMed  Google Scholar 

  77. Talero E, Garcia-Maurino S, Motilva V. Melatonin, autophagy and intestinal bowel disease. Curr Pharm Des. 2014;20:4816–27.

    Article  CAS  PubMed  Google Scholar 

  78. Mozaffari S, Abdollahi M. Melatonin, a promising supplement in inflammatory bowel disease: a comprehensive review of evidences. Curr Pharm Des. 2011;17:4372–8.

    Article  CAS  PubMed  Google Scholar 

  79. Calvo JR, Guerrero JM, Osuna C, Molinero P, Carrillo-Vico A. Melatonin triggers Crohn’s disease symptoms. J Pineal Res. 2002;32:277–8.

    Article  CAS  PubMed  Google Scholar 

  80. Zaouali MA, Boncompagni E, Reiter RJ, Bejaoui M, Freitas I, Pantazi E, Folch-Puy E, Abdennebi HB, Garcia-Gil FA, Rosello-Catafau J. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J Pineal Res. 2013;55:65–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardinali, D.P. (2016). Peripheral Innervation of Neuroendocrine-Immune System: The Challenges to Change a Physiological Paradigm. In: Ma Vie en Noir. Springer Biographies. Springer, Cham. https://doi.org/10.1007/978-3-319-41679-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41679-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41678-6

  • Online ISBN: 978-3-319-41679-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics