Skip to main content

Melatonin and the “Diseases of the Soul”: The Stone of Madness Returns

  • Chapter
  • First Online:
Ma Vie en Noir

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Circadian rhythm abnormalities, as shown by sleep/wake cycle disturbances, are among the most prevalent signs of mood disorders, advances or delays in the circadian phase and decrease of amplitude being documented in patients with major depressive disorder, bipolar disorder, or seasonal affective disorder. Changes in the sleep/wake cycle structure of mood disorders often precede changes in a patient’s ongoing clinical state. Clinical studies involving chronobiological manipulations, such as exposure to bright light in the morning and melatonin administration in the evening, have been found useful for reducing phase abnormalities and depressive symptomatology, and psychiatric treatment programs are increasingly incorporating recommendations that chronotherapies be adopted as adjunctive strategies for treating mood disorders. Among the melatonin analogs on the market, agomelatine has been licensed by the European Medicines Agency for the treatment of major depressive disorder. Agomelatine has a unique pharmacological profile as it is both an MT1/MT2 melatonin receptor agonist and, although with less affinity, an antagonist of 5-HT2C receptors. As the first melatonergic antidepressant on the market, agomelatine is a treatment for sleep disturbances as well as for depressive symptoms. Lastly, drug-induced liver injury has been noted in patients treated with agomelatine, and this has become a subject of great concern. The use of the native molecule melatonin in mood disorders is hampered by the low doses approved for clinical use (2 mg in Europe, 3 mg in Argentina). These doses are clearly inadequate when compared with the melatonin analogs approved on the market, which, in addition to being generally more potent than the native molecule, are used in considerably higher amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malhi GS, Kuiper S. Chronobiology of mood disorders. Acta Psychiatr Scand Suppl. 2013;444:2–15.

    Article  PubMed  Google Scholar 

  2. Cardinali DP, Srinivasan V, Brzezinski A, Brown GM. Melatonin and its analogs in insomnia and depression. J Pineal Res. 2012;52:365–75.

    Article  CAS  PubMed  Google Scholar 

  3. Miller S, Dell’Osso B, Ketter TA. The prevalence and burden of bipolar depression. J Affect Disord. 2014;169 Suppl 1:S3–11.

    Article  PubMed  Google Scholar 

  4. Halberg F, Vestergaard P, Sakai M. Rhythmometry on urinary 17-ketosteroid excretion by healthy men and women and patients with chronic schizophrenia; possible chronopathology in depressive illness. Arch Anat Histol Embryol. 1968;51:299–311.

    CAS  PubMed  Google Scholar 

  5. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. 2015.

    Google Scholar 

  6. Milhiet V, Etain B, Boudebesse C, Bellivier F. Circadian biomarkers, circadian genes and bipolar disorders. J Physiol Paris. 2011;105:183–9.

    Article  PubMed  Google Scholar 

  7. Monk TH, Buysse DJ, Potts JM, DeGrazia JM, Kupfer DJ. Morningness-eveningness and lifestyle regularity. Chronobiol Int. 2004;21:435–43.

    Article  PubMed  Google Scholar 

  8. Wirz-Justice A. Diurnal variation of depressive symptoms. Dialogues Clin Neurosci. 2008;10:337–43.

    PubMed  PubMed Central  Google Scholar 

  9. Dunlap JC, Loros JJ, DeCoursey PJ. Chronobiology: biological timekeeping. Sunderland: Sinauer; 2004.

    Google Scholar 

  10. Artioli P, Lorenzi C, Pirovano A, Serretti A, Benedetti F, Catalano M, Smeraldi E. How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur Neuropsychopharmacol. 2007;17:587–94.

    Article  CAS  PubMed  Google Scholar 

  11. Foster RG, Wulff K. The rhythm of rest and excess. Nat Rev Neurosci. 2005;6:407–14.

    Article  CAS  PubMed  Google Scholar 

  12. Bersani FS, Iannitelli A, Pacitti F, Bersani G. Sleep and biorythm disturbances in schizophrenia, mood and anxiety disorders: a review. Riv Psichiatr. 2012;47:365–75.

    PubMed  Google Scholar 

  13. Dinges DF, Pack F, Williams K, Gillen KA, Powell JW, Ott GE, Aptowicz C, Pack AI. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep. 1997;20:267–77.

    CAS  PubMed  Google Scholar 

  14. Harvey AG, Mullin BC, Hinshaw SP. Sleep and circadian rhythms in children and adolescents with bipolar disorder. Dev Psychopathol. 2006;18:1147–68.

    Article  PubMed  Google Scholar 

  15. Harvey AG. Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry. 2008;165:820–9.

    Article  PubMed  Google Scholar 

  16. Wehr TA, Goodwin FK, Wirz-Justice A, Breitmaier J, Craig C. 48-hour sleep-wake cycles in manic-depressive illness: naturalistic observations and sleep deprivation experiments. Arch Gen Psychiatry. 1982;39:559–65.

    Article  CAS  PubMed  Google Scholar 

  17. Lauterbach D, Behnke C, McSweeney LB. Sleep problems among persons with a lifetime history of posttraumatic stress disorder alone and in combination with a lifetime history of other psychiatric disorders: a replication and extension. Compr Psychiatry. 2011;52:580–6.

    Article  PubMed  Google Scholar 

  18. Lewy AJ, Sack RL, Singer CM. Melatonin, light and chronobiological disorders. Ciba Found Symp. 1985;117:231–52.

    CAS  PubMed  Google Scholar 

  19. Cardinali DP, Pandi-Perumal SR, Brown GM. Sleep and circadian dysregulation in depressive illness. Pharmacological implications. Clin Neuropsychiatry. 2011;8:321–38.

    Google Scholar 

  20. Kennedy SH, Tighe S, McVey G, Brown GM. Melatonin and cortisol “switches” during mania, depression, and euthymia in a drug-free bipolar patient. J Nerv Ment Dis. 1989;177:300–3.

    Article  CAS  PubMed  Google Scholar 

  21. Nurnberger Jr JI, Adkins S, Lahiri DK, Mayeda A, Hu K, Lewy A, Miller A, Bowman ES, Miller MJ, Rau L, Smiley C, Davis-Singh D. Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch Gen Psychiatry. 2000;57:572–9.

    Article  CAS  PubMed  Google Scholar 

  22. Albrecht U. Circadian clocks and mood-related behaviors. Handb Exp Pharmacol. 2013;217:227–39.

    Article  CAS  PubMed  Google Scholar 

  23. Dallaspezia S, Benedetti F. Chronobiological therapy for mood disorders. Expert Rev Neurother. 2011;11:961–70.

    Article  PubMed  Google Scholar 

  24. Coogan AN, Thome J. Chronotherapeutics and psychiatry: setting the clock to relieve the symptoms. World J Biol Psychiatry. 2011;12 Suppl 1:40–3.

    Article  PubMed  Google Scholar 

  25. Lewy AJ, Emens J, Jackman A, Yuhas K. Circadian uses of melatonin in humans. Chronobiol Int. 2006;23:403–12.

    Article  CAS  PubMed  Google Scholar 

  26. McClung CA. How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry. 2013;74:242–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005;434:640–4.

    Article  CAS  PubMed  Google Scholar 

  28. Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppa T, Lichtermann D, Praschak-Rieder N, Neumeister A, Nilsson LG, Kasper S, Peltonen L, Adolfsson R, Schalling M, Partonen T. Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology. 2003;28:734–9.

    Article  CAS  PubMed  Google Scholar 

  29. Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, Aron L, Rietschel M, Wellek S, Soronen P, Paunio T, Koch A, Chen P, Lathrop M, Adolfsson R, Persson ML, Kasper S, Schalling M, Peltonen L, Schumann G. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med. 2007;39:229–38.

    Article  CAS  PubMed  Google Scholar 

  30. Benedetti F, Dallaspezia S, Colombo C, Pirovano A, Marino E, Smeraldi E. A length polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder. Neurosci Lett. 2008;445:184–7.

    Article  CAS  PubMed  Google Scholar 

  31. Serretti A, Cusin C, Benedetti F, Mandelli L, Pirovano A, Zanardi R, Colombo C, Smeraldi E. Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2005;137B:36–9.

    Article  PubMed  Google Scholar 

  32. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary PV, Cartagena P, Barchas JD, Schatzberg AF, Jones EG, Myers RM, Watson Jr SJ, Akil H, Bunney WE. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A. 2013;110:9950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dallaspezia S, Lorenzi C, Pirovano A, Colombo C, Smeraldi E, Benedetti F. Circadian clock gene Per3 variants influence the postpartum onset of bipolar disorder. Eur Psychiatry. 2011;26:138–40.

    Article  CAS  PubMed  Google Scholar 

  34. Karthikeyan R, Marimuthu G, Ramasubramanian C, Arunachal G, BaHammam AS, Spence DW, Cardinali DP, Brown GM, Pandi-Perumal SR. Association of Per3 length polymorphism with bipolar I disorder and schizophrenia. Neuropsychiatr Dis Treat. 2014;10:2025–330.

    Google Scholar 

  35. Bodenstein C, Gosak M, Schuster S, Marhl M, Perc M. Modeling the seasonal adaptation of circadian clocks by changes in the network structure of the suprachiasmatic nucleus. PLoS Comput Biol. 2012;8:e1002697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Archer SN, Carpen JD, Gibson M, Lim GH, Johnston JD. Skene DJ, von SM: polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep. 2010;33:695–701.

    PubMed  PubMed Central  Google Scholar 

  37. Rocha PM, Neves FS, Alvarenga NB, Hughet RB, Barbosa IG, Correa H. Association of Per3 gene with bipolar disorder: comment on “Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia”. Bipolar Disord. 2010;12:875–6.

    Article  CAS  PubMed  Google Scholar 

  38. Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van RE, Zeitzer JM, Czeisler CA, Lockley SW. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96:E463–72.

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem. 2010;17:2070–95.

    Article  CAS  PubMed  Google Scholar 

  40. Tournier BB, Birkenstock J, Pevet P, Vuillez P. Gene expression in the suprachiasmatic nuclei and the photoperiodic time integration. Neuroscience. 2009;160:240–7.

    Article  CAS  PubMed  Google Scholar 

  41. Jiménez-Ortega V, Cano P, Pagano ES, Fernández-Mateos P, Esquifino AI, Cardinali DP. Melatonin supplementation decreases prolactin synthesis and release in rat adenohypophysis. Correlation with anterior pituitary redox state and circadian clock mechanisms. Chronobiol Int. 2012;29:1021–35.

    Article  PubMed  Google Scholar 

  42. Golombek DA, Escolar E, Burin LJ, De Brito Sanchez MG, Fernández DD, Cardinali DP. Chronopharmacology of melatonin: inhibition by benzodiazepine antagonism. Chronobiol Int. 1992;9:124–31.

    Article  CAS  PubMed  Google Scholar 

  43. Golombek DA, Fernández Duque D, De Brito SM, Burin L, Cardinali DP. Time-dependent anticonvulsant activity of melatonin in hamsters. Eur J Pharmacol. 1992;210:253–8.

    Article  CAS  PubMed  Google Scholar 

  44. Muñoz-Hoyos A, Sánchez-Forte M, Molina-Carballo A, Escames G, Martin-Medina E, Reiter RJ, Molina-Font JA, Acuña-Castroviejo D. Melatonin’s role as an anticonvulsant and neuronal protector: experimental and clinical evidence. J Child Neurol. 1998;13:501–9.

    Article  PubMed  Google Scholar 

  45. Molina-Carballo A, Muñoz-Hoyos A, Sánchez-Forte M, Uberos-Fernández J, Moreno-Madrid F, Acuña-Castroviejo D. Melatonin increases following convulsive seizures may be related to its anticonvulsant properties at physiological concentrations. Neuropediatrics. 2007;38:122–5.

    Article  CAS  PubMed  Google Scholar 

  46. Solmaz I, Gurkanlar D, Gokcil Z, Goksoy C, Ozkan M, Erdogan E. Antiepileptic activity of melatonin in guinea pigs with pentylenetetrazol-induced seizures. Neurol Res. 2009;31:989–95.

    Article  CAS  PubMed  Google Scholar 

  47. Fenoglio-Simeone K, Mazarati A, Sefidvash-Hockley S, Shin D, Wilke J, Milligan H, Sankar R, Rho JM, Maganti R. Anticonvulsant effects of the selective melatonin receptor agonist ramelteon. Epilepsy Behav. 2009;16:52–7.

    Article  PubMed  Google Scholar 

  48. Golombek DA, Rosenstein RE, Cardinali DP. Benzodiazepine antagonism abolishes melatonin effects on rodent behavior Melatonin and the Pineal Gland: from basic science to clinical application. Amsterdam: Excerpta Medica; 1993. p. 255–60.

    Google Scholar 

  49. Pang CS, Tsang SF, Yang JC. Effects of melatonin, morphine and diazepam on formalin-induced nociception in mice. Life Sci. 2001;68:943–51.

    Article  CAS  PubMed  Google Scholar 

  50. Papp M, Litwa E, Gruca P, Mocaer E. Anxiolytic-like activity of agomelatine and melatonin in three animal models of anxiety. Behav Pharmacol. 2006;17:9–18.

    CAS  PubMed  Google Scholar 

  51. Ulugol A, Dokmeci D, Guray G, Sapolyo N, Ozyigit F, Tamer M. Antihyperalgesic, but not antiallodynic, effect of melatonin in nerve-injured neuropathic mice: Possible involvements of the L-arginine-NO pathway and opioid system. Life Sci. 2006;78:1592–7.

    Article  CAS  PubMed  Google Scholar 

  52. Srinivasan V, Pandi-Perumal SR, Spence DW, Moscovitch A, Trakht I, Brown GM, Cardinali DP. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Res Bull. 2010;81:362–71.

    Article  CAS  PubMed  Google Scholar 

  53. Cardinali DP, Vidal MF, Vigo DE. Agomelatine: its role in the management of major depressive disorder. Clin Med Insights Psychiatry. 2012;4:1–23.

    Article  Google Scholar 

  54. de Bodinat C, Guardiola-Lemaitre B, Mocaer E, Renard P, Munoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov. 2010;9:628–42.

    Article  PubMed  Google Scholar 

  55. Varcoe TJ, Kennaway DJ. Activation of 5-HT2C receptors acutely induces Per1 gene expression in the rat SCN in vitro. Brain Res. 2008;1209:19–28.

    Article  CAS  PubMed  Google Scholar 

  56. Detanico BC, Piato AL, Freitas JJ, Lhullier FL, Hidalgo MP, Caumo W, Elisabetsky E. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. Eur J Pharmacol. 2009;607:121–5.

    Article  CAS  PubMed  Google Scholar 

  57. McElroy SL, Winstanley EL, Martens B, Patel NC, Mori N, Moeller D, McCoy J, Keck Jr PE. A randomized, placebo-controlled study of adjunctive ramelteon in ambulatory bipolar I disorder with manic symptoms and sleep disturbance. Int Clin Psychopharmacol. 2011;26(1):48–53.

    Article  PubMed  Google Scholar 

  58. Crupi R, Mazzon E, Marino A, La SG, Bramanti P, Cuzzocrea S, Spina E. Melatonin treatment mimics the antidepressant action in chronic corticosterone-treated mice. J Pineal Res. 2010;49:123–9.

    CAS  PubMed  Google Scholar 

  59. Sharpley AL, Rawlings NB, Brain S, McTavish SF, Cowen PJ. Does agomelatine block 5-HT2C receptors in humans? Psychopharmacology (Berl). 2011;213:653–5.

    Article  CAS  Google Scholar 

  60. Quera Salva MA, Vanier B, Laredo J, Hartley S, Chapotot F, Moulin C, Lofaso F, Guilleminault C. Major depressive disorder, sleep EEG and agomelatine: an open-label study. Int J Neuropsychopharmacol. 2007;10:691–6.

    CAS  PubMed  Google Scholar 

  61. Zupancic M, Guilleminault C. Agomelatine: a preliminary review of a new antidepressant. CNS Drugs. 2006;20:981–92.

    Article  CAS  PubMed  Google Scholar 

  62. Kasper S, Hajak G, Wulff K, Hoogendijk WJ, Montejo AL, Smeraldi E, Rybakowski JK, Quera-Salva MA, Wirz-Justice AM, Picarel-Blanchot F, Bayle FJ. Efficacy of the novel antidepressant agomelatine on the circadian rest-activity cycle and depressive and anxiety symptoms in patients with major depressive disorder: a randomized, double-blind comparison with sertraline. J Clin Psychiatry. 2010;71:109–20.

    Article  CAS  PubMed  Google Scholar 

  63. Kennedy SH, Rizvi SJ. Agomelatine in the treatment of major depressive disorder: potential for clinical effectiveness. CNS Drugs. 2010;24:479–99.

    Article  CAS  PubMed  Google Scholar 

  64. Friedrich ME, Akimova E, Huf W, Konstantinidis A, Papageorgiou K, Winkler D, Toto S, Greil W, Grohmann R, Kasper S. Drug-induced liver injury during antidepressant treatment: results of AMSP, a drug surveillance program. Int J Neuropsychopharmacol. 2015;19(4).

    Google Scholar 

  65. Anonm. Agomelatine: to be avoided, with or without a “patient booklet”. Prescrire Int 2015;24:294.

    Google Scholar 

  66. Mortezaee K, Sabbaghziarani F, Omidi A, Dehpour AR, Omidi N, Ghasemi S, Pasbakhsh P, Ragerdi KI. Therapeutic value of melatonin post-treatment on CCl-induced fibrotic rat liver. Can J Physiol Pharmacol 2015;1–12.

    Google Scholar 

  67. Czechowska G, Celinski K, Korolczuk A, Wojcicka G, Dudka J, Bojarska A, Reiter RJ. Protective effects of melatonin against thioacetamide-induced liver fibrosis in rats. J Physiol Pharmacol. 2015;66:567–79.

    CAS  PubMed  Google Scholar 

  68. Gim SA, Koh PO. Melatonin attenuates hepatic ischemia through mitogen-activated protein kinase signaling. J Surg Res. 2015;198:228–36.

    Article  CAS  PubMed  Google Scholar 

  69. Stern Y. Cognitive reserve. Neuropsychologia. 2009;47:2015–28.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cardinali, D.P. (2016). Melatonin and the “Diseases of the Soul”: The Stone of Madness Returns. In: Ma Vie en Noir. Springer Biographies. Springer, Cham. https://doi.org/10.1007/978-3-319-41679-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41679-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41678-6

  • Online ISBN: 978-3-319-41679-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics