Skip to main content

Visfatin, Obesity, and Cancer

  • Chapter
  • First Online:
Adipocytokines, Energy Balance, and Cancer

Abstract

Cancer represents an important public health concern. Overweight, obesity, and metabolic syndrome influence the risk and prognosis of several disease states including cancer. Metabolic changes related to visceral obesity could contribute to a dysfunctional adipose tissue provoking chronic subclinical inflammation, insulin resistance, and abnormal production of adipokines. Visfatin, found in the visceral adipose tissue, known also as nicotinamide phosphoribosyltransferase (Nampt) and pre-B-cell colony-enhancing factor (PBEF), acts as a multifaceted molecule with a triple action: a cytokine, a growth factor, and an enzyme. It exerts a pivotal role in a multitude of metabolic and stress responses and cellular bioenergetics, specifically nicotinamide adenine dinucleotide (NAD) synthesis. Visfatin/Nampt exhibits antiapoptotic, proliferative, pro-inflammatory, pro-angiogenic, and metastatic properties. The insulin-mimetic function of visfatin/Nampt remains a controversial issue. Circulating visfatin/Nampt is enhanced in many cancers, including obesity-associated malignancies. It is associated with bad prognosis and higher tumor stage and grade. Plasma visfatin/Nampt may be a novel risk factor as well as a surrogate clinical marker in cancer therapeutics. Moreover, pharmacologic neutralization of visfatin/Nampt employing agents that reduce its levels or downregulate signaling pathways downstream of visfatin/Nampt could be promising anticancer treatments. In this book chapter, we will particularly focus on both intracellular and extracellular visfatin/Nampt’s contribution to cancer pathophysiology as well as on the mechanisms underlying the connection between visfatin/Nampt and cancer. Further research is required in order to conclude whether visfatin/Nampt may be a therapeutic target in the pharmacological arsenal for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Mono-adenosine diphosphate

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

AMPK:

5′ AMP-activated protein kinase

ATP:

Adenosine triphosphate

BC:

Breast cancer

BMI:

Body mass index

Cdks:

Cyclin-dependent kinases

C.I.:

Confidence interval

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myeloid leukemia

CRP:

C-reactive protein

CtBPs:

Mammalian COOH-terminal binding proteins

ER:

Estrogen receptor

ERKs:

Extracellular signal-regulated kinases

HL:

Hodgkin lymphoma

ICAM-1 :

Intercellular adhesion molecule-1

IL:

Interleukin

IGF:

Insulin-like growth factor

IRS:

Insulin receptor substrate

MAPK:

Mitogen-activated protein kinase

MDS:

Myelodysplastic syndrome

MM:

Multiple myeloma

MPD:

Myeloproliferative disorders

MMPs:

Matrix metalloproteinases

NAD:

Nicotinamide adenine dinucleotide

Nampt:

Nicotinamide phosphoribosyltransferase

NHL:

Non-Hodgkin lymphoma

NF-kB:

Nuclear factor-kB

OR:

Odds ratio

PARP:

Poly (ADP-ribose) polymerase

PBEF:

Pre-B-cell colony-enhancing factor

PI3K :

Phosphatidylinositol 3-kinase

PTEN:

Phosphatase and tensin homolog

SirT:

Silent mating type information regulation, sirtuin

SNPs:

Single-nucleotide polymorphisms

STAT:

Signal transducer and activator of transcription

TNF-α :

Tumor necrosis factor-α

Tiam1:

T-cell lymphoma invasion and metastasis-inducing protein 1

VCAM-1 :

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

References

  1. Dalamaga M, Diakopoulos KN, Mantzoros CS (2012) The role of adiponectin in cancer: a review of current evidence. Endocr Rev 33:547–594. doi:10.1210/er.2011-1015, PMID: 22547160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vucenik I, Stains JP (2012) Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann N Y Acad Sci 1271:37–43. doi:10.1111/j.1749-6632.2012.06750.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578. doi:10.1016/s0140-6736(08)60269-x, PMID: 18280327

    Article  PubMed  Google Scholar 

  4. Dalamaga M, Karmaniolas K, Chamberland J, Nikolaidou A, Lekka A, Dionyssiou-Asteriou A, Mantzoros CS (2013) Higher fetuin-A, lower adiponectin and free leptin levels mediate effects of excess body weight on insulin resistance and risk for myelodysplastic syndrome. Metabolism 62:1830–1839. doi:10.1016/j.metabol.2013.09.007, PMID: 24140093

    Article  CAS  PubMed  Google Scholar 

  5. Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J, Mantzoros CS (2013) Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev 34:377–412. doi:10.1210/er.2012-1053, PMID: 23475416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS (2013) Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab 18:29–42. doi:10.1016/j.cmet.2013.05.010, PMID: 23770129

    Article  CAS  PubMed  Google Scholar 

  7. Dalamaga M (2014) Resistin as a biomarker linking obesity and inflammation to cancer: potential clinical perspectives. Biomark Med 8:107–118. doi:10.2217/bmm.13.99, PMID: 24325232

    Article  CAS  PubMed  Google Scholar 

  8. Dalamaga M (2013) Obesity, insulin resistance, adipocytokines and breast cancer: new biomarkers and attractive therapeutic targets. World J Exp Med 3:34–42. doi:10.5493/wjem.v3.i3.34, PMID: 24520544

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dalamaga M (2013) Interplay of adipokines and myokines in cancer pathophysiology: emerging therapeutic implications. World J Exp Med 3:26–33. doi:10.5493/wjem.v3.i3.26, PMID: 24520543

    Article  PubMed  PubMed Central  Google Scholar 

  10. Christodoulatos GS, Dalamaga M (2014) Micro-RNAs as clinical biomarkers and therapeutic targets in breast cancer: Quo vadis? World J Clin Oncol 5:71–81. doi:10.5306/wjco.v5.i2.71, PMID: 24829853

    Article  PubMed  PubMed Central  Google Scholar 

  11. Trichopoulos D, Adami HO, Ekbom A, Hsieh CC, Lagiou P (2008) Early life events and conditions and breast cancer risk: from epidemiology to etiology. Int J Cancer 122:481–485. doi:10.1002/ijc.23303, PMID: 18022897

    Article  CAS  PubMed  Google Scholar 

  12. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556. doi:10.1210/jc.2004-0395, PMID: 15181022

    Article  CAS  PubMed  Google Scholar 

  13. Luk T, Malam Z, Marshall JC (2008) Pre-B cell colony-enhancing factor (PBEF)/visfatin: a novel mediator of innate immunity. J Leukoc Biol 83:804–816. doi:10.1189/jlb.0807581, PMID: 18252866

    Article  CAS  PubMed  Google Scholar 

  14. Conde J, Scotece M, Abella V, Lopez V, Pino J, Gomez-Reino JJ, Gualillo O (2014) An update on leptin as immunomodulator. Expert Rev Clin Immunol 10:1165–1170. doi:10.1586/1744666x.2014.942289, PMID: 25098336

    Article  CAS  PubMed  Google Scholar 

  15. Dalamaga M, Karmaniolas K, Papadavid E, Pelekanos N, Sotiropoulos G, Lekka A (2013) Hyperresistinemia is associated with postmenopausal breast cancer. Menopause 20:845–851. doi:10.1097/GME.0b013e31827f06dc, PMID: 23481121

    Article  PubMed  Google Scholar 

  16. Dalamaga M, Sotiropoulos G, Karmaniolas K, Pelekanos N, Papadavid E, Lekka A (2013) Serum resistin: a biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin Biochem 46:584–590. doi:10.1016/j.clinbiochem.2013.01.001, PMID: 23321342

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Zhang Y, Dorweiler B, Cui D, Wang T, Woo CW, Brunkan CS, Wolberger C, Imai S, Tabas I (2008) Extracellular nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. J Biol Chem 283:34833–34843. doi:10.1074/jbc.M805866200, PMID: 18945671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kitani T, Okuno S, Fujisawa H (2003) Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett 544:74–78, PMID: 12782293

    Article  CAS  PubMed  Google Scholar 

  19. Imai S (2009) Nicotinamide phosphoribosyltransferase (nampt): a link between NAD biology, metabolism, and diseases. Curr Pharm Des 15:20–28, PMID: 19149599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garten A, Petzold S, Korner A, Imai S, Kiess W (2009) Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab 20:130–138. doi:10.1016/j.tem.2008.10.004, PMID: 19109034

    Article  CAS  PubMed  Google Scholar 

  21. Moschen AR, Gerner RR, Tilg H (2010) Pre-B cell colony enhancing factor/nampt/visfatin in inflammation and obesity-related disorders. Curr Pharm Des 16:1913–1920

    Article  CAS  PubMed  Google Scholar 

  22. Zhang LQ, Heruth DP, Ye SQ (2011) Nicotinamide phosphoribosyltransferase in human diseases. J Bioanal Biomed 3:13–25. doi:10.4172/1948-593x.1000038, PMID: 22140607

    Article  PubMed  CAS  Google Scholar 

  23. Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754–50763. doi:10.1074/jbc.M408388200, PMID: 15381699

    Article  CAS  PubMed  Google Scholar 

  24. Shackelford RE, Mayhall K, Maxwell NM, Kandil E, Coppola D (2013) Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes Cancer 4:447–456. doi:10.1177/1947601913507576, PMID: 24386506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Galli M, Van Gool F, Rongvaux A, Andris F, Leo O (2010) The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer. Cancer Res 70:8–11. doi:10.1158/0008-5472.can-09-2465, PMID: 20028851

    Article  CAS  PubMed  Google Scholar 

  26. Dalamaga M (2012) Nicotinamide phosphoribosyl-transferase/visfatin: a missing link between overweight/obesity and postmenopausal breast cancer? Potential preventive and therapeutic perspectives and challenges. Med Hypotheses 79:617–621. doi:10.1016/j.mehy.2012.07.036, PMID: 22922056

    Article  CAS  PubMed  Google Scholar 

  27. Koumaki V, Dalamaga M (2012) Nampt (nicotinamide phosphoribosyltransferase). Atlas Genet Cytogenet Oncol Haematol 16:909–912

    Google Scholar 

  28. Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C (2006) Structure of nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol 13:661–662. doi:10.1038/nsmb1114, PMID: 16783373

    Article  CAS  PubMed  Google Scholar 

  29. Kim MK, Lee JH, Kim H, Park SJ, Kim SH, Kang GB, Lee YS, Kim JB, Kim KK, Suh SW, Eom SH (2006) Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866. J Mol Biol 362:66–77. doi:10.1016/j.jmb.2006.06.082, PMID: 16901503

    Article  CAS  PubMed  Google Scholar 

  30. Duarte-Pereira S, Silva SS, Azevedo L, Castro L, Amorim A, Silva RM (2014) Nampt and naprt1: novel polymorphisms and distribution of variants between normal tissues and tumor samples. Sci Rep 4:6311. doi:10.1038/srep06311, PMID: 25201160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burgos ES, Ho MC, Almo SC, Schramm VL (2009) A phosphoenzyme mimic, overlapping catalytic sites and reaction coordinate motion for human nampt. Proc Natl Acad Sci U S A 106:13748–13753. doi:10.1073/pnas.0903898106, PMID: 19666527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin PR, Shea RJ, Mulks MH (2001) Identification of a plasmid-encoded gene from haemophilus ducreyi which confers NAD independence. J Bacteriol 183:1168–1174. doi:10.1128/jb.183.4.1168-1174.2001, PMID: 11157928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGlothlin JR, Gao L, Lavoie T, Simon BA, Easley RB, Ma SF, Rumala BB, Garcia JG, Ye SQ (2005) Molecular cloning and characterization of canine pre-B-cell colony-enhancing factor. Biochem Genet 43:127–141, PMID: 15934174

    Article  CAS  PubMed  Google Scholar 

  34. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I (1994) Cloning and characterization of the cdna encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 14:1431–1437, PMID: 8289818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, Andris F (2002) Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol 32:3225–3234. doi:10.1002/1521-4141(200211)32:11<3225::aid-immu3225>3.0.co;2-l, PMID: 12555668

    Article  CAS  PubMed  Google Scholar 

  36. Stephens JM, Vidal-Puig AJ (2006) An update on visfatin/pre-B cell colony-enhancing factor, an ubiquitously expressed, illusive cytokine that is regulated in obesity. Curr Opin Lipidol 17:128–131. doi:10.1097/01.mol.0000217893.77746.4b, PMID: 16531748

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka M, Nozaki M, Fukuhara A, Segawa K, Aoki N, Matsuda M, Komuro R, Shimomura I (2007) Visfatin is released from 3t3-l1 adipocytes via a non-classical pathway. Biochem Biophys Res Commun 359:194–201. doi:10.1016/j.bbrc.2007.05.096, PMID: 17543285

    Article  CAS  PubMed  Google Scholar 

  38. Haider DG, Schaller G, Kapiotis S, Maier C, Luger A, Wolzt M (2006) The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia 49:1909–1914. doi:10.1007/s00125-006-0303-7, PMID: 16736128

    Article  CAS  PubMed  Google Scholar 

  39. Storka A, Vojtassakova E, Mueller M, Kapiotis S, Haider DG, Jungbauer A, Wolzt M (2008) Angiotensin inhibition stimulates ppargamma and the release of visfatin. Eur J Clin Invest 38:820–826. doi:10.1111/j.1365-2362.2008.02025.x, PMID: 19021699

    Article  CAS  PubMed  Google Scholar 

  40. Garten A, Petzold S, Barnikol-Oettler A, Korner A, Thasler WE, Kratzsch J, Kiess W, Gebhardt R (2010) Nicotinamide phosphoribosyltransferase (nampt/PBEF/visfatin) is constitutively released from human hepatocytes. Biochem Biophys Res Commun 391:376–381. doi:10.1016/j.bbrc.2009.11.066, PMID: 19912992

    Article  CAS  PubMed  Google Scholar 

  41. Pillai VB, Sundaresan NR, Kim G, Samant S, Moreno-Vinasco L, Garcia JG, Gupta MP (2013) Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol Heart Circ Physiol 304:H415–426. doi:10.1152/ajpheart.00468.2012, PMID: 23203961

    Article  CAS  PubMed  Google Scholar 

  42. Olarescu NC, Ueland T, Lekva T, Dahl TB, Halvorsen B, Aukrust P, Bollerslev J (2012) Adipocytes as a source of increased circulating levels of nicotinamide phosphoribosyltransferase/visfatin in active acromegaly. J Clin Endocrinol Metab 97:1355–1362. doi:10.1210/jc.2011-2417, PMID: 22319029

    Article  CAS  PubMed  Google Scholar 

  43. Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W (2015) Physiological and pathophysiological roles of nampt and NAD metabolism. Nat Rev Endocrinol 11:535–546. doi:10.1038/nrendo.2015.117, PMID: 26215259

    CAS  PubMed  Google Scholar 

  44. Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R, Bouloumie A (2006) Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49:744–747. doi:10.1007/s00125-006-0173-z, PMID: 16496121

    Article  CAS  PubMed  Google Scholar 

  45. Chang YH, Chang DM, Lin KC, Shin SJ, Lee YJ (2011) Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab Res Rev 27:515–527. doi:10.1002/dmrr.1201, PMID: 21484978

    Article  PubMed  CAS  Google Scholar 

  46. Zahorska-Markiewicz B, Olszanecka-Glinianowicz M, Janowska J, Kocelak P, Semik-Grabarczyk E, Holecki M, Dabrowski P, Skorupa A (2007) Serum concentration of visfatin in obese women. Metabolism 56:1131–1134. doi:10.1016/j.metabol.2007.04.007, PMID: 17618961

    Article  CAS  PubMed  Google Scholar 

  47. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B (2006) Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab 91:1578–1581. doi:10.1210/jc.2005-2248, PMID: 16449335

    Article  CAS  PubMed  Google Scholar 

  48. Romacho T, Sanchez-Ferrer CF, Peiro C (2013) Visfatin/nampt: an adipokine with cardiovascular impact. Mediators Inflamm 2013:946427. doi:10.1155/2013/946427, PMID: 23843684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Peiro C, Romacho T, Carraro R, Sanchez-Ferrer CF (2010) Visfatin/PBEF/nampt: a new cardiovascular target? Front Pharmacol 1:135. doi:10.3389/fphar.2010.00135, PMID: 21833174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dalamaga M, Karmaniolas K, Papadavid E, Pelekanos N, Sotiropoulos G, Lekka A (2011) Elevated serum visfatin/nicotinamide phosphoribosyl-transferase levels are associated with risk of postmenopausal breast cancer independently from adiponectin, leptin, and anthropometric and metabolic parameters. Menopause 18:1198–1204. doi:10.1097/gme.0b013e31821e21f5, PMID: 21712732

    Article  PubMed  Google Scholar 

  51. Dalamaga M, Archondakis S, Sotiropoulos G, Karmaniolas K, Pelekanos N, Papadavid E, Lekka A (2012) Could serum visfatin be a potential biomarker for postmenopausal breast cancer? Maturitas 71:301–308. doi:10.1016/j.maturitas.2011.12.013, PMID: 22261365

    Article  CAS  PubMed  Google Scholar 

  52. Li XY, Tang SH, Zhou XC, Ye YH, Xu XQ, Li RZ (2014) Preoperative serum visfatin levels and prognosis of breast cancer among chinese women. Peptides 51:86–90. doi:10.1016/j.peptides.2013.11.010, PMID: 24269296

    Article  PubMed  CAS  Google Scholar 

  53. Assiri AM, Kamel HF, Hassanien MF (2015) Resistin, visfatin, adiponectin, and leptin: risk of breast cancer in pre- and postmenopausal saudi females and their possible diagnostic and predictive implications as novel biomarkers. Dis Markers 2015:253519. doi:10.1155/2015/253519, PMID: 25838618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tian W, Zhu Y, Wang Y, Teng F, Zhang H, Liu G, Ma X, Sun D, Rohan T, Xue F (2013) Visfatin, a potential biomarker and prognostic factor for endometrial cancer. Gynecol Oncol 129:505–512. doi:10.1016/j.ygyno.2013.02.022, PMID: 23438672

    Article  CAS  PubMed  Google Scholar 

  55. Luhn P, Dallal CM, Weiss JM, Black A, Huang WY, Lacey JV Jr, Hayes RB, Stanczyk FZ, Wentzensen N, Brinton LA (2013) Circulating adipokine levels and endometrial cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 22:1304–1312. doi:10.1158/1055-9965.epi-13-0258, PMID: 23696194

    Article  CAS  PubMed  Google Scholar 

  56. Ilhan TT, Kebapcilar A, Yilmaz SA, Ilhan T, Kerimoglu OS, Pekin AT, Akyurek F, Unlu A, Celik C (2015) Relations of serum visfatin and resistin levels with endometrial cancer and factors associated with its prognosis. Asian Pac J Cancer Prev 16:4503–4508, PMID: 26107194

    Article  PubMed  Google Scholar 

  57. Nergiz Avcioglu S, Altinkaya SO, Kucuk M, Yuksel H, Omurlu IK, Yanik S (2015) Visfatin concentrations in patients with endometrial cancer. Gynecol Endocrinol 31:202–207. doi:10.3109/09513590.2014.975687, PMID: 25377860

    Article  PubMed  CAS  Google Scholar 

  58. Nakajima TE, Yamada Y, Hamano T, Furuta K, Matsuda T, Fujita S, Kato K, Hamaguchi T, Shimada Y (2010) Adipocytokines as new promising markers of colorectal tumors: adiponectin for colorectal adenoma, and resistin and visfatin for colorectal cancer. Cancer Sci 101:1286–1291. doi:10.1111/j.1349-7006.2010.01518.x, PMID: 20331631

    Article  CAS  PubMed  Google Scholar 

  59. Al-Harithy R (2013) Implication of visfatin levels in patients with colon cancer. Am J Res Commun 1:35–44

    Google Scholar 

  60. Chen M, Wang Y, Li Y, Zhao L, Ye S, Wang S, Yu C, Xie H (2013) Association of plasma visfatin with risk of colorectal cancer: an observational study of Chinese patients. Asia Pac J Clin Oncol 12:65–74. doi:10.1111/ajco.12090, PMID: 23910020

    Article  Google Scholar 

  61. Fazeli MS, Dashti H, Akbarzadeh S, Assadi M, Aminian A, Keramati MR, Nabipour I (2013) Circulating levels of novel adipocytokines in patients with colorectal cancer. Cytokine 62:81–85. doi:10.1016/j.cyto.2013.02.012, PMID: 23474107

    Article  CAS  PubMed  Google Scholar 

  62. Tulubas F, Mete R, Oznur M, Topcu B (2014) The role of adipocytokines in colon cancer and adenomas. J Med Biochem 33:135–142. doi:10.2478/jomb-2013-0001

    CAS  Google Scholar 

  63. Neubauer K, Misa IB, Diakowska D (2015) Nampt/PBEF/visfatin upregulation in colorectal tumors, mirrored in normal tissue and whole blood of colorectal cancer patients, is associated with metastasis, hypoxia, il1beta, and anemia. Biomed Res Int 2015:523930. doi:10.1155/2015/523930, PMID: 26075243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gomaa S, Abou Youssif T, Elmissery M, Elgendy S (2015) Clinical significance of serum adipokine visfatin/enampt in relation to prostate cancer detection and aggressiveness. Egypt J Obes Diabetes Endocrinol 1:36–42. doi:10.4103/2356-8062.159992

    Article  Google Scholar 

  65. Yu-Duan T, Chao-Ping W, Chih-Yu C, Li-Wen L, Tsun-Mei L, Chia-Chang H, Fu-Mei C, Hsien-Chang L, Hsia-Fen H, Yau-Jiunn L, Jer-Yiing H (2013) Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in male oral squamous cell carcinoma patients. Med Oral Patol Oral Cir Bucal 18:e180–186, PMID: 23229270

    Article  PubMed  Google Scholar 

  66. Nakajima TE, Yamada Y, Hamano T, Furuta K, Gotoda T, Katai H, Kato K, Hamaguchi T, Shimada Y (2009) Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol 44:685–690. doi:10.1007/s00535-009-0063-5, PMID: 19430715

    Article  CAS  PubMed  Google Scholar 

  67. Lu GW, Wang QJ, Xia MM, Qian J (2014) Elevated plasma visfatin levels correlate with poor prognosis of gastric cancer patients. Peptides 58:60–64. doi:10.1016/j.peptides.2014.05.016, PMID: 24911837

    Article  CAS  PubMed  Google Scholar 

  68. Zhang K, Zhou B, Zhang P, Zhang Z, Chen P, Pu Y, Song Y, Zhang L (2014) Prognostic value of serum nicotinamide phosphoribosyltransferase in patients with bladder cancer. Croat Med J 55:507–513, PMID: 25358883

    Article  PubMed  PubMed Central  Google Scholar 

  69. Reddy PS, Umesh S, Thota B, Tandon A, Pandey P, Hegde AS, Balasubramaniam A, Chandramouli BA, Santosh V, Rao MR, Kondaiah P, Somasundaram K (2008) PBEF1/namprtase/visfatin: a potential malignant astrocytoma/glioblastoma serum marker with prognostic value. Cancer Biol Ther 7:663–668

    Article  CAS  PubMed  Google Scholar 

  70. Suga H, Sugaya M, Miyagaki T, Kawaguchi M, Morimura S, Kai H, Kagami S, Ohmatsu H, Fujita H, Asano Y, Tada Y, Kadono T, Sato S (2013) Serum visfatin levels in patients with atopic dermatitis and cutaneous t-cell lymphoma. Eur J Dermatol 23:629–635. doi:10.1684/ejd.2013.2107, PMID: 24001451

    CAS  PubMed  Google Scholar 

  71. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, Coscia M, Maffei R, Rossi D, Wang T, Inghirami G, Rizzi M, Gaidano G, Garcia JG, Wolberger C, Raffaelli N, Deaglio S (2015) Extracellular nicotinamide phosphoribosyltransferase (nampt) promotes m2 macrophage polarization in chronic lymphocytic leukemia. Blood 125:111–123. doi:10.1182/blood-2014-07-589069, PMID: 25368373

    Article  CAS  PubMed  Google Scholar 

  72. Dalamaga M, Karmaniolas K, Triantafilli M, Panagiotou A, Papadavid E, Sotiropoulos G, Dimas C, Lekka A (2010) Circulating levels of visfatin and high molecular weight adiponectin in multiple myeloma: a case-control study. Haematologica 95:582

    Article  CAS  Google Scholar 

  73. Skoczen S, Tomasik PJ, Gozdzik J, Fijorek K, Krasowska-Kwiecien A, Wiecha O, Czogala W, Dluzniewska A, Sztefko K, Starzyk J, Siedlar M (2014) Visfatin concentrations in children with leukemia before and after stem cell transplantation. Exp Hematol 42:252–260. doi:10.1016/j.exphem.2013.12.006, PMID: 24407162

    Article  CAS  PubMed  Google Scholar 

  74. Kosova F, Coskun T, Kaya Y, Kara E, Ari Z (2013) Adipocytokine levels of colon cancer patients before and after treatment. Bratisl Lek Listy 114:394–397, PMID: 23822624

    CAS  PubMed  Google Scholar 

  75. Nakajima TE, Yamada Y, Hamano T, Furuta K, Oda I, Kato H, Kato K, Hamaguchi T, Shimada Y (2010) Adipocytokines and squamous cell carcinoma of the esophagus. J Cancer Res Clin Oncol 136:261–266. doi:10.1007/s00432-009-0657-6, PMID: 19693538

    Article  CAS  PubMed  Google Scholar 

  76. Chen CL, Yang WS, Yang HI, Chen CF, You SL, Wang LY, Lu SN, Liu CJ, Kao JH, Chen PJ, Chen DS, Chen CJ (2014) Plasma adipokines and risk of hepatocellular carcinoma in chronic hepatitis B virus-infected carriers: a prospective study in Taiwan. Cancer Epidemiol Biomarkers Prev 23:1659–1671. doi:10.1158/1055-9965.epi-14-0161, PMID: 24895413

    Article  CAS  PubMed  Google Scholar 

  77. Gasiorowska A, Talar-Wojnarowska R, Kaczka A, Borkowska A, Czupryniak L, Malecka-Panas E (2013) Role of adipocytokines and its correlation with endocrine pancreatic function in patients with pancreatic cancer. Pancreatology 13:409–414. doi:10.1016/j.pan.2013.04.198, PMID: 23890140

    Article  CAS  PubMed  Google Scholar 

  78. Korner A, Garten A, Bluher M, Tauscher R, Kratzsch J, Kiess W (2007) Molecular characteristics of serum visfatin and differential detection by immunoassays. J Clin Endocrinol Metab 92:4783–4791. doi:10.1210/jc.2007-1304, PMID: 17878256

    Article  PubMed  CAS  Google Scholar 

  79. Hufton SE, Moerkerk PT, Brandwijk R, de Bruine AP, Arends JW, Hoogenboom HR (1999) A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett 463:77–82, PMID: 10601642

    Article  CAS  PubMed  Google Scholar 

  80. Lee YC, Yang YH, Su JH, Chang HL, Hou MF, Yuan SS (2011) High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiol Biomarkers Prev 20:1892–1901. doi:10.1158/1055-9965.epi-11-0399, PMID: 21784959

    Article  CAS  PubMed  Google Scholar 

  81. Bi TQ, Che XM, Liao XH, Zhang DJ, Long HL, Li HJ, Zhao W (2011) Overexpression of nampt in gastric cancer and chemopotentiating effects of the nampt inhibitor FK866 in combination with fluorouracil. Oncol Rep 26:1251–1257. doi:10.3892/or.2011.1378

    CAS  PubMed  Google Scholar 

  82. Shackelford RE, Bui MM, Coppola D, Hakam A (2010) Over-expression of nicotinamide phosphoribosyltransferase in ovarian cancers. Int J Clin Exp Pathol 3:522–527, PMID: 20606733

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Olesen UH, Hastrup N, Sehested M (2011) Expression patterns of nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase in human malignant lymphomas. APMIS 119:296–303. doi:10.1111/j.1600-0463.2011.02733.x, PMID: 21492230

    Article  CAS  PubMed  Google Scholar 

  84. Huang WS, Chen CN, Sze CI, Teng CC (2013) Visfatin induces stromal cell-derived factor-1 expression by beta1 integrin signaling in colorectal cancer cells. J Cell Physiol 228:1017–1024. doi:10.1002/jcp.24248, PMID: 23042611

    Article  CAS  PubMed  Google Scholar 

  85. Long HL, Che XM, Bi TQ, Li HJ, Liu JS, Li DW (2012) The expression of nicotinamide phosphoribosyl transferase and vascular endothelial growth factor-A in gastric carcinoma and their clinical significance. Zhonghua Wai Ke Za Zhi 50:839–842, PMID: 23157963

    PubMed  Google Scholar 

  86. Wieser V, Moschen AR, Tilg H (2012) Adipocytokines and hepatocellular carcinoma. Dig Dis 30:508–513. doi:10.1159/000341702, PMID: 23108307

    Article  PubMed  Google Scholar 

  87. Oki K, Yamane K, Kamei N, Nojima H, Kohno N (2007) Circulating visfatin level is correlated with inflammation, but not with insulin resistance. Clin Endocrinol (Oxf) 67:796–800. doi:10.1111/j.1365-2265.2007.02966.x, PMID: 17634078

    Article  CAS  Google Scholar 

  88. Chen CC, Li TC, Li CI, Liu CS, Lin WY, Wu MT, Lai MM, Lin CC (2007) The relationship between visfatin levels and anthropometric and metabolic parameters: association with cholesterol levels in women. Metabolism 56:1216–1220. doi:10.1016/j.metabol.2007.04.018, PMID: 17697864

    Article  CAS  PubMed  Google Scholar 

  89. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, Tilg H (2007) Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol 178:1748–1758, PMID: 17237424

    Article  CAS  PubMed  Google Scholar 

  90. Jia SH, Li Y, Parodo J, Kapus A, Fan L, Rotstein OD, Marshall JC (2004) Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 113:1318–1327. doi:10.1172/jci19930, PMID: 15124023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim SR, Bae YH, Bae SK, Choi KS, Yoon KH, Koo TH, Jang HO, Yun I, Kim KW, Kwon YG, Yoo MA, Bae MK (2008) Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim Biophys Acta 1783: 886–895. doi:10.1016/j.bbamcr.2008.01.004, PMID: 18241674

    Article  CAS  PubMed  Google Scholar 

  92. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I (2007) Retraction. Science 318:565. doi:10.1126/science.318.5850.565b, PMID: 17962537

    Article  CAS  PubMed  Google Scholar 

  93. Xie H, Tang SY, Luo XH, Huang J, Cui RR, Yuan LQ, Zhou HD, Wu XP, Liao EY (2007) Insulin-like effects of visfatin on human osteoblasts. Calcif Tissue Int 80:201–210. doi:10.1007/s00223-006-0155-7, PMID: 17340225

    Article  CAS  PubMed  Google Scholar 

  94. Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, Dasgupta B, Sasaki Y, Wolberger C, Townsend RR, Milbrandt J, Kiess W, Imai S (2007) Nampt/PBEF/visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 6:363–375. doi:10.1016/j.cmet.2007.09.003, PMID: 17983582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Joost HG (2014) Diabetes and cancer: epidemiology and potential mechanisms. Diab Vasc Dis Res 11:390–394. doi:10.1177/1479164114550813, PMID: 25268021

    Article  CAS  PubMed  Google Scholar 

  96. Au PY, Martin N, Chau H, Moemeni B, Chia M, Liu FF, Minden M, Yeh WC (2005) The oncogene PDGF-B provides a key switch from cell death to survival induced by TNF. Oncogene 24:3196–3205. doi:10.1038/sj.onc.1208516, PMID: 15735680

    Article  PubMed  CAS  Google Scholar 

  97. Song NY, Surh YJ (2012) Janus-faced role of SIRT1 in tumorigenesis. Ann N Y Acad Sci 1271:10–19. doi:10.1111/j.1749-6632.2012.06762.x, PMID: 23050959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van der Veer E, Ho C, O’Neil C, Barbosa N, Scott R, Cregan SP, Pickering JG (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282:10841–10845. doi:10.1074/jbc.C700018200, PMID: 17307730

    Article  PubMed  CAS  Google Scholar 

  99. Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123:437–448. doi:10.1016/j.cell.2005.08.011, PMID: 16269335

    Article  CAS  PubMed  Google Scholar 

  100. Wong S, Weber JD (2007) Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J 407:451–460. doi:10.1042/bj20070151, PMID: 17620057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Herranz D, Maraver A, Canamero M, Gomez-Lopez G, Inglada-Perez L, Robledo M, Castelblanco E, Matias-Guiu X, Serrano M (2013) SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene 32:4052–4056. doi:10.1038/onc.2012.407, PMID: 22986535

    Article  CAS  PubMed  Google Scholar 

  102. Hao C, Zhu P, Yang X, Han Z, Jiang J, Zong C, Zhang X, Liu W, Zhao Q, Fan T, Zhang L, Wei L (2014) Overexpression of SIRT1 promotes metastasis through epithelial-mesenchymal transition in hepatocellular carcinoma. BMC Cancer 14:978. doi:10.1186/1471-2407-14-978, PMID: 25522783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol 29:4116–4129. doi:10.1128/mcb.00121-09, PMID: 19470756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Burkle A, Virag L (2013) Poly(ADP-ribose): paradigms and paradoxes. Mol Aspects Med 34:1046–1065. doi:10.1016/j.mam.2012.12.010, PMID: 23290998

    Article  PubMed  CAS  Google Scholar 

  105. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39:8–24. doi:10.1016/j.molcel.2010.06.017, PMID: 20603072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rojo F, Garcia-Parra J, Zazo S, Tusquets I, Ferrer-Lozano J, Menendez S, Eroles P, Chamizo C, Servitja S, Ramirez-Merino N, Lobo F, Bellosillo B, Corominas JM, Yelamos J, Serrano S, Lluch A, Rovira A, Albanell J (2012) Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann Oncol 23:1156–1164. doi:10.1093/annonc/mdr361, PMID: 21908496

    Article  CAS  PubMed  Google Scholar 

  107. Galia A, Calogero AE, Condorelli R, Fraggetta F, La Corte A, Ridolfo F, Bosco P, Castiglione R, Salemi M (2012) PARP-1 protein expression in glioblastoma multiforme. Eur J Histochem 56, e9. doi:10.4081/ejh.2012.e9, PMID: 22472897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Venkateshaiah SU, Khan S, Ling W, Bam R, Li X, van Rhee F, Usmani S, Barlogie B, Epstein J, Yaccoby S (2013) Nampt/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity. Exp Hematol 41:547–557.e542. doi:10.1016/j.exphem.2013.02.008, PMID: 23435312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang B, Hasan MK, Alvarado E, Yuan H, Wu H, Chen WY (2011) Nampt overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene 30:907–921. doi:10.1038/onc.2010.468, PMID: 20956937

    Article  CAS  PubMed  Google Scholar 

  110. Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G, Sassone-Corsi P (2006) Control of aif-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5:873–877, PMID: 16628003

    Article  CAS  PubMed  Google Scholar 

  111. El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney MW, Sassone-Corsi P, Dantzer F (2009) Functional interplay between PARP-1 and SIRT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci 66:3219–3234. doi:10.1007/s00018-009-0105-4, PMID: 19672559

    Article  PubMed  CAS  Google Scholar 

  112. Tolstikov V, Nikolayev A, Dong S, Zhao G, Kuo MS (2014) Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (nampt) inhibition on human cancer cells. PLoS One 9, e114019. doi:10.1371/journal.pone.0114019, PMID: 25486521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kim JG, Kim EO, Jeong BR, Min YJ, Park JW, Kim ES, Namgoong IS, Kim YI, Lee BJ (2010) Visfatin stimulates proliferation of MCF-7 human breast cancer cells. Mol Cells 30:341–345. doi:10.1007/s10059-010-0124-x, PMID: 20848232

    Article  PubMed  CAS  Google Scholar 

  114. Park HJ, Kim SR, Kim SS, Wee HJ, Bae MK, Ryu MH, Bae SK (2014) Visfatin promotes cell and tumor growth by upregulating Notch1 in breast cancer. Oncotarget 5:5087–5099, PMID: 24970818

    Article  PubMed  PubMed Central  Google Scholar 

  115. Patel ST, Mistry T, Brown JE, Digby JE, Adya R, Desai KM, Randeva HS (2010) A novel role for the adipokine visfatin/pre-B cell colony-enhancing factor 1 in prostate carcinogenesis. Peptides 31:51–57. doi:10.1016/j.peptides.2009.10.001, PMID: 19819277

    Article  CAS  PubMed  Google Scholar 

  116. Adya R, Tan BK, Punn A, Chen J, Randeva HS (2008) Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc Res 78:356–365. doi:10.1093/cvr/cvm111, PMID: 18093986

    Article  CAS  PubMed  Google Scholar 

  117. Bae YH, Bae MK, Kim SR, Lee JH, Wee HJ, Bae SK (2009) Upregulation of fibroblast growth factor-2 by visfatin that promotes endothelial angiogenesis. Biochem Biophys Res Commun 379:206–211. doi:10.1016/j.bbrc.2008.12.042, PMID: 19100714

    Article  CAS  PubMed  Google Scholar 

  118. Santidrian AF, LeBoeuf SE, Wold ED, Ritland M, Forsyth JS, Felding BH (2014) Nicotinamide phosphoribosyltransferase can affect metastatic activity and cell adhesive functions by regulating integrins in breast cancer. DNA Repair (Amst) 23:79–87. doi:10.1016/j.dnarep.2014.08.006, PMID: 25263164

    Article  CAS  Google Scholar 

  119. Bae SK, Kim SR, Kim JG, Kim JY, Koo TH, Jang HO, Yun I, Yoo MA, Bae MK (2006) Hypoxic induction of human visfatin gene is directly mediated by hypoxia-inducible factor-1. FEBS Lett 580:4105–4113. doi:10.1016/j.febslet.2006.06.052, PMID: 16828081

    Article  CAS  PubMed  Google Scholar 

  120. Chinnadurai G (2009) The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69:731–734. doi:10.1158/0008-5472.can-08-3349, PMID: 19155295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang Q, Wang SY, Nottke AC, Rocheleau JV, Piston DW, Goodman RH (2006) Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci U S A 103:9029–9033. doi:10.1073/pnas.0603269103, PMID: 16740659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Horssen R, Willemse M, Haeger A, Attanasio F, Guneri T, Schwab A, Stock CM, Buccione R, Fransen JA, Wieringa B (2013) Intracellular NAD(H) levels control motility and invasion of glioma cells. Cell Mol Life Sci 70:2175–2190. doi:10.1007/s00018-012-1249-1, PMID: 23307072

    Article  CAS  PubMed  Google Scholar 

  123. Paliwal S, Ho N, Parker D, Grossman SR (2012) CtBP2 promotes human cancer cell migration by transcriptional activation of Tiam1. Genes Cancer 3:481–490. doi:10.1177/1947601912463695, PMID: 23264848

    PubMed  PubMed Central  Google Scholar 

  124. Oh SW, Park CY, Lee ES, Yoon YS, Lee ES, Park SS, Kim Y, Sung NJ, Yun YH, Lee KS, Kang HS, Kwon Y, Ro J (2011) Adipokines, insulin resistance, metabolic syndrome, and breast cancer recurrence: a cohort study. Breast Cancer Res 13:R34. doi:10.1186/bcr2856, PMID: 21450081

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhou J, Seidel ER (2010) Estrogens induce visfatin expression in 3T3-L1 cells. Peptides 31:271–274. doi:10.1016/j.peptides.2009.12.004, PMID: 20004694

    Article  CAS  PubMed  Google Scholar 

  126. Schlienger JL, Luca F, Vinzio S, Pradignac A (2009) Obesity and cancer. Rev Med Interne 30:776–782. doi:10.1016/j.revmed.2009.04.007, PMID: 19524333

    Article  PubMed  Google Scholar 

  127. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, Papadiamantis Y, Markopoulos C, Spanos E, Chrousos G, Trichopoulos D (2004) Adiponectin and breast cancer risk. J Clin Endocrinol Metab 89:1102–1107. doi:10.1210/jc.2003-031804, PMID: 15001594

    Article  CAS  PubMed  Google Scholar 

  128. Brema I, Hatunic M, Finucane F, Burns N, Nolan JJ, Haider D, Wolzt M, Ludvik B (2008) Plasma visfatin is reduced after aerobic exercise in early onset type 2 diabetes mellitus. Diabetes Obes Metab 10:600–602. doi:10.1111/j.1463-1326.2008.00872.x, PMID: 18476987

    Article  CAS  PubMed  Google Scholar 

  129. Zhu J, Schott M, Liu R, Liu C, Shen B, Wang Q, Mao X, Xu K, Wu X, Schinner S, Papewalis C, Scherbaum WA, Liu C (2008) Intensive glycemic control lowers plasma visfatin levels in patients with type 2 diabetes. Horm Metab Res 40:801–805. doi:10.1055/s-0028-1082040, PMID: 18686225

    Article  CAS  PubMed  Google Scholar 

  130. Aguilar D, Fernandez ML (2014) Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity. Adv Nutr 5:497–502, PMID: 25513283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim SR, Park HJ, Bae YH, Ahn SC, Wee HJ, Yun I, Jang HO, Bae MK, Bae SK (2012) Curcumin down-regulates visfatin expression and inhibits breast cancer cell invasion. Endocrinology 153:554–563. doi:10.1210/en.2011-1413, PMID: 22186408

    Article  CAS  PubMed  Google Scholar 

  132. Duffy MJ (2006) Serum tumor markers in breast cancer: are they of clinical value? Clin Chem 52:345–351. doi:10.1373/clinchem.2005.059832, PMID: 16410341

    Article  CAS  PubMed  Google Scholar 

  133. Nusken KD, Nusken E, Petrasch M, Rauh M, Dotsch J (2007) Preanalytical influences on the measurement of visfatin by enzyme immuno assay. Clin Chim Acta 382:154–156. doi:10.1016/j.cca.2007.04.004, PMID: 17499682

    Article  PubMed  CAS  Google Scholar 

  134. Dalamaga M, Christodoulatos GS (2015) Adiponectin as a biomarker linking obesity and adiposopathy to hematologic malignancies. Horm Mol Biol Clin Investig 23:5–20. doi:10.1515/hmbci-2015-0016, PMID: 26057219

    CAS  PubMed  Google Scholar 

  135. Sampath D, Zabka TS, Misner DL, O’Brien T, Dragovich PS (2015) Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol Ther 151:16–31. doi:10.1016/j.pharmthera.2015.02.004, PMID: 25709099

    Article  CAS  PubMed  Google Scholar 

  136. Olesen UH, Christensen MK, Bjorkling F, Jaattela M, Jensen PB, Sehested M, Nielsen SJ (2008) Anticancer agent CHS-828 inhibits cellular synthesis of NAD. Biochem Biophys Res Commun 367:799–804. doi:10.1016/j.bbrc.2008.01.019, PMID: 18201551

    Article  CAS  PubMed  Google Scholar 

  137. Wang W, Elkins K, Oh A, Ho YC, Wu J, Li H, Xiao Y, Kwong M, Coons M, Brillantes B, Cheng E, Crocker L, Dragovich PS, Sampath D, Zheng X, Bair KW, O’Brien T, Belmont LD (2014) Structural basis for resistance to diverse classes of NAMPT inhibitors. PLoS One 9, e109366. doi:10.1371/journal.pone.0109366, PMID: 25285661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Cea M, Zoppoli G, Bruzzone S, Fruscione F, Moran E, Garuti A, Rocco I, Cirmena G, Casciaro S, Olcese F, Pierri I, Cagnetta A, Ferrando F, Ghio R, Gobbi M, Ballestrero A, Patrone F, Nencioni A (2009) Apo866 activity in hematologic malignancies: a preclinical in vitro study. Blood 113:6035–6037. doi:10.1182/blood-2009-03-209213, PMID: 19498032, author reply 6037–6038

    Article  CAS  PubMed  Google Scholar 

  139. Hasmann M, Schemainda I (2003) FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 63:7436–7442, PMID: 14612543

    CAS  PubMed  Google Scholar 

  140. Chini CC, Guerrico AM, Nin V, Camacho-Pereira J, Escande C, Barbosa MT, Chini EN (2014) Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Cancer Res 20:120–130. doi:10.1158/1078-0432.ccr-13-0150, PMID: 24025713

    Article  CAS  PubMed  Google Scholar 

  141. Bi TQ, Che XM (2010) Nampt/PBEF/visfatin and cancer. Cancer Biol Ther 10:119–125. doi:10.4161/cbt.10.2.12581, PMID: 20647743

    Article  CAS  PubMed  Google Scholar 

  142. Okumura S, Sasaki T, Minami Y, Ohsaki Y (2012) Nicotinamide phosphoribosyltransferase: a potent therapeutic target in non-small cell lung cancer with epidermal growth factor receptor-gene mutation. J Thorac Oncol 7:49–56. doi:10.1097/JTO.0b013e318233d686, PMID: 22089115

    Article  CAS  PubMed  Google Scholar 

  143. Zhang LY, Liu LY, Qie LL, Ling KN, Xu LH, Wang F, Fang SH, Lu YB, Hu H, Wei EQ, Zhang WP (2012) Anti-proliferation effect of APO866 on C6 glioblastoma cells by inhibiting nicotinamide phosphoribosyltransferase. Eur J Pharmacol 674:163–170. doi:10.1016/j.ejphar.2011.11.017, PMID: 22119381

    Article  CAS  PubMed  Google Scholar 

  144. Christensen MK, Erichsen KD, Olesen UH, Tjornelund J, Fristrup P, Thougaard A, Nielsen SJ, Sehested M, Jensen PB, Loza E, Kalvinsh I, Garten A, Kiess W, Bjorkling F (2013) Nicotinamide phosphoribosyltransferase inhibitors, design, preparation, and structure-activity relationship. J Med Chem 56:9071–9088. doi:10.1021/jm4009949, PMID: 24164086

    Article  CAS  PubMed  Google Scholar 

  145. Olesen UH, Petersen JG, Garten A, Kiess W, Yoshino J, Imai S, Christensen MK, Fristrup P, Thougaard AV, Bjorkling F, Jensen PB, Nielsen SJ, Sehested M (2010) Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase. BMC Cancer 10:677. doi:10.1186/1471-2407-10-677, PMID: 21144000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. McLornan DP, List A, Mufti GJ (2014) Applying synthetic lethality for the selective targeting of cancer. N Engl J Med 371:1725–1735. doi:10.1056/NEJMra1407390, PMID: 25354106

    Article  CAS  PubMed  Google Scholar 

  147. Iglehart JD, Silver DP (2009) Synthetic lethality—a new direction in cancer-drug development. N Engl J Med 361:189–191. doi:10.1056/NEJMe0903044, PMID: 19553640

    Article  CAS  PubMed  Google Scholar 

  148. Bajrami I, Kigozi A, Van Weverwijk A, Brough R, Frankum J, Lord CJ, Ashworth A (2012) Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. EMBO Mol Med 4:1087–1096. doi:10.1002/emmm.201201250, PMID: 22933245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dalamaga M.D., M.Sc., M.P.H., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dalamaga, M., Christodoulatos, G.S. (2017). Visfatin, Obesity, and Cancer. In: Reizes, O., Berger, N. (eds) Adipocytokines, Energy Balance, and Cancer. Energy Balance and Cancer, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-41677-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41677-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41675-5

  • Online ISBN: 978-3-319-41677-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics