Advertisement

Network Layer Control System: Consensus-Based Control, Theoretical Results and Performance Issues

  • Sabato ManfrediEmail author
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

In this chapter we formulate consensus-based algorithms operating at the network layer of the multilayer control system in Fig.  1.2. We first define the concept of bottleneck switches/router cooperation and then present a network queue fluid model of the heterogeneous sources accessing to multi-bottleneck network. Finally we formulate a consensus-based cooperative control law that: (i) stabilizes the network; (ii) balances the queue length at a specified set point value \(q_0\), reducing packet loss and improving link utilization; (iii) guarantees max–min fair allocation. The control algorithm can be implemented by end-to-end and hop-by-hop communication mechanism respectively over wired and wireless networks.

Keywords

Queue Length Link Capacity Source Rate Cooperative Control Link Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Imer, O.C., Compans, S., Basar, T., Srikant, R.: Available bit rate congestion control in ATM networks: developing explicit rate control algorithms. IEEE Control Syst. Mag. 21, 38 (2001)Google Scholar
  2. 2.
    Mascolo, S.: Smith’s principle for congestion control in high-speed data networks. IEEE Trans. Autom. Control 45, 358–364 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Quet, P.H., Ataslar, B., Iftar, A., Ozbay, H., Kang, T., Kalyanaraman, S.: Rate based flow controllers for communication networks in the presence of uncertain time varying multiple time delays. Automatica 38, 917–928 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sichitiu, M.L., Bauer, P.H.: Asymptotic stability of congestion control systems with multiple sources. IEEE Trans. Autom. Control 51, 292–298 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Iwatani, J., Yakoh, T.: A detection method of active queue management in communication paths. IEEE Int. Conf. Ind. Technol. (ICIT) (2010)Google Scholar
  6. 6.
    Hollot, C.V., Misra, V., Towsley, D., Gong, W.: Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Trans. Autom. Control 47, 945–959 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Balakrishnan, H., Dukkipati, N., McKeown, N., Tomlin, C.J.: Stability analysis of explicit congestion control protocols. IEEE Commun. Lett. 11, 823–825 (2007)CrossRefGoogle Scholar
  8. 8.
    Kelly, F., Raina, G., Voice, T.: Stability and fairness of explicit congestion control with small buffers. ACM SIGCOMM Comput. Commun. Rev. (2008)Google Scholar
  9. 9.
    Dukkipati, N., Kobayashi, M., Zhang-Shen, R., McKeown, N.: Processor sharing flows in the internet. In: Thirteenth International Workshop on Quality of Service (2005)Google Scholar
  10. 10.
    Paek, J., Govindan, R.: RCRT: rate-controlled reliable transport for wireless sensor networks. Sensys. (2007)Google Scholar
  11. 11.
    Akan, O., Akyildiz, I.F.: Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Trans. Netw. 13, 1003–1016 (2005)CrossRefGoogle Scholar
  12. 12.
    Koutsopoulos, I., Tassiulas, L.: Optimal transmission rate control policies in a wireless link under partial state information. IEEE Trans. Autom. Control 55, 127–131 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mastrocristino, T., Tesoriere, G., Grieco, L.A., Boggia, G., Palattella, M.R., Camarda, P.: Congestion control based on data-aggregation for wireless sensor networks. In: IEEE International Symposium on Industrial Electronics (2010)Google Scholar
  14. 14.
    Wirz, R., Marin, R., Ferre, M., Barrio, J., Claver, J.M., Ortego, J.: Bidirectional transport protocol for teleoperated rob. IEEE Trans. Ind. Electron. 56, 3772–3781 (2009)CrossRefGoogle Scholar
  15. 15.
    Yashiro, D., Yakoh, T., Ohnishi, K.: End-to-end flow control using PI controller for force control system over TCP/IP network. In: 7th IEEE International Conference on Industrial Informatics (2009)Google Scholar
  16. 16.
    Lu, Q., Han, Q.-L.: Cooperative control of a multi-robot system for odor source localization. IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society (2011)Google Scholar
  17. 17.
    Andaluz, V., Rampinelli, V.T.L., Roberti, F., Carelli, R.: Coordinated cooperative control of mobile manipulators. IEEE International Conference on Industrial Technology (2011)Google Scholar
  18. 18.
    Rezaee, H., Abdollahi, F.: Mobile robots cooperative control and obstacle avoidance using potential field. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2011)Google Scholar
  19. 19.
    Hu, S., Wang, H., Kwong, S., Kuo, C.J.: Novel rate-quantization model-based rate control with adaptive initialization for spatial scalable video coding. IEEE Trans. Ind. Electron. 59, 1673–1684 (2012)CrossRefGoogle Scholar
  20. 20.
    Corradini, M.L., Fossi, V., Giantomassi, A., Ippoliti, G., Longhi, S., Orlando, G.: Minimal resource allocating networks for discrete time sliding mode control of robotic manipulators. IEEE Trans. Ind. Inf. 8, 733–745 (2012)CrossRefGoogle Scholar
  21. 21.
    Chakareski, J.: In-network packet scheduling and rate allocation: a content delivery perspective. IEEE Trans. Multimed. 13, 1092–1102 (2011)CrossRefGoogle Scholar
  22. 22.
    Collotta, M., Bello, L.L, Toscano, E., Mirabella, O.: Dynamic load balancing techniques for flexible wireless industrial networks. In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society (2010)Google Scholar
  23. 23.
    Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control 129 (2007)Google Scholar
  24. 24.
    Zhang, H., Lewis, F.L., Qu, Z.: Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Trans. Ind. Electron. 59, 3026–3041 (2012)CrossRefGoogle Scholar
  25. 25.
    Cheng, T.M., Savkin, A.V.: Decentralized control of mobile sensor networks for asymptotically optimal blanket coverage between two boundaries. IEEE Trans. Ind. Electron. 9, 365–376 (2013)Google Scholar
  26. 26.
    Zhan, J., Li, X.: Flocking of multi-agent systems via model predictive control based on position-only measurements. IEEE Trans. Ind. Inf. 9, 377–385 (2013)CrossRefGoogle Scholar
  27. 27.
    Takahashi, R., Kinoshita, H., Murata, T., Tamura, J., Sugimasa, M., Komura, A., Futami, M., Ichinose, M., Ide, K.: Output power smoothing and hydrogen production by using variable speed wind generators. IEEE Trans. Ind. Electron. 57, 485–493 (2010)CrossRefGoogle Scholar
  28. 28.
    Panagi, P., Polycarpou, M.M.: A coordinated communication scheme for distributed fault tolerant control. IEEE Trans. Ind. Inf. 9, 386–393 (2013)CrossRefGoogle Scholar
  29. 29.
    Zhang, N., Yang, M., Jing, Y., Zhang, S.: Congestion control for diffserf network using second-order sliding mode control. IEEE Trans. Ind. Electron. 56, 3330–3336 (2009)CrossRefGoogle Scholar
  30. 30.
    Das, A.K., Fierro, R., Kumar, R.V., Ostrowski, J.P., Spletzer, J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18, 813–825 (2002)CrossRefGoogle Scholar
  31. 31.
    Kelly, F., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks:shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 74, 237–252 (1998)CrossRefzbMATHGoogle Scholar
  32. 32.
    Horn R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1995)Google Scholar
  33. 33.
    Desoer, C.A., Yang, Y.T.: On the generalized Nyquist stability criterion. IEEE Trans. Autom. Control 25, 187–196 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Mohar, B.: The Laplacian spectrum of graphs. Graph theory, combinatorics, and applications. Graph Theory Comb. Appl. 2 (1991)Google Scholar
  35. 35.
    Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power-laws and the AS-level internet topology. IEEE/ACM Trans. Netw. 11, 514–524 (2003)CrossRefzbMATHGoogle Scholar
  36. 36.
    Ohkubo, J., Tanaka, K., Horiguchi, T.: Generation of complex bipartite graphs by using a preferential rewiring process. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (2005)Google Scholar
  37. 37.
    Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, New York (1991)zbMATHGoogle Scholar
  38. 38.
    Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1992)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly

Personalised recommendations