Skip to main content

Multilayer Control System Framework for Cyber-Physical Systems

  • Chapter
  • First Online:
Book cover Multilayer Control of Networked Cyber-Physical Systems

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

The chapter introduces the Networked Cyber-Physical System (NCPS) model and the multilayer control system conceptual framework. The latter considers two control systems located at two layers: network layer control system and application layer control system. A cooperative consensus-based algorithm and the related performance metrics are introduced for each layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    In ATM protocol it is used an Explicit Rate (ER) information via Resource Management (RM) cell to control the source rate. In TCP/IP network at the router a Round Trip Time (RTT) can be estimated and used to set the packet dropping probability for source rate control purpose via ECN (Explicit Congestion Notification) packets. Alternatively, as suggested in [17], a specific field “rate field” in the acknowledgment packet can be used to notify the source rate.

References

  1. Rajhans, A., Cheng, S.W., Schmerl, B., Krogh, B.H., Aghi, C., Bhave, A.: An architectural approach to the design and analysis of cyber-physical systems. Third Int. Workshop Multi-Paradig. Modeling 21, 1–10 (2009)

    Google Scholar 

  2. Networking and Information Technology Research and Development Program: High-Confidence Medical Devices: Cyber-Physical Systems for 21st Century Health Care (2009). http://www.nitrd.gov/About/MedDevice-FINAL1-web.pdf

  3. Graham, S., Baliga, G., Kumar, P.R.: Abstractions, architecture, mechanism, and middleware for networked control. IEEE Trans. Autom. Control 54, 1490–1503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Manfredi, S.: Design of a multi-hop dynamic consensus algorithm over wireless sensor networks. Control Eng. Pract. 21, 381–394 (2013)

    Article  Google Scholar 

  5. Gupta, R.A., Chow, M.Y.: Networked control system: overview and research trends. IEEE Trans. Ind. Electron. 57, 2527–2535 (2010)

    Article  Google Scholar 

  6. Bemporad, A., Heemels, M., Johansson, M.: Networked Control Systems. Springer, London (2010)

    Book  MATH  Google Scholar 

  7. Wang, F.-Y., Liu, D.: Networked Control Systems: Theory and Applications. Springer, London (2008)

    Book  Google Scholar 

  8. Martins, N.C., Dahleh, M.A.: Feedback control in the presence of noisy channels: “Bode-Like” fundamental limitations of performance. IEEE Trans. Autom. Control 53, 1604–1615 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, M., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control Syst. Mag. 21, 84–99 (2001)

    Article  Google Scholar 

  10. Demirel, B., Briat, C., Johansson, M.: Deterministic and stochastic approaches to supervisory control design for networked systems with time-varying communication delays. Nonlinear Anal.: Hybrid Syst. 10, 94–110 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Ling, Q., Lemmon, M.D.: Soft real-time scheduling of networked control systems with dropouts governed by a Markov chain. Proceedings of the American Control Conference, vol. 6, pp. 4845–4850 (2003)

    Google Scholar 

  12. Hawkinson, J., Bates, T.: Guidelines for the Creation, Selection, and Registration of an Autonomous System (AS) (1996). https://tools.ietf.org/rfc/rfc1930.txt

  13. Jouanigot, J.-M., Karrenberg, D., Yu, J., Bates, T., Terpstra, M., Gerich, E., Joncheray, L.: Representation of IP Routing Policies in a Routing Registry (1995). http://www.heise.de/netze/rfc/rfcs/rfc1786.shtml

  14. Ferguson, P., Huston, G.: Quality of Service: Delivering QoS on the Internet and in Corporate Networks. Wiley, New York (1998)

    Google Scholar 

  15. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for Differentiated Services (1998). https://tools.ietf.org/html/rfc2475

  16. ATM Forum Traffic Management, AF-TM-0056.000: The ATM Forum Traffic Management Specification, Version 4.0 (1996)

    Google Scholar 

  17. Dukkipati, N., Kobayashi, M., Zhang-Shen, R., McKeown, N.: Processor sharing flows in the internet. Thirteenth International Workshop on Quality of Service (2005)

    Google Scholar 

  18. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  20. Eren, T., Belhumeur, P.N., Morse, A.S.: Coordination of groups of mobile agents using nearest neighbor rules

    Google Scholar 

  21. Lin, Z., Brouke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. Autom. Control 49, 622–629 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Blondel, V., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent coordination, consensus, and flocking. 44th IEEE Conference on Decision and Control, pp. 2996–3000 (2005)

    Google Scholar 

  23. Cort\(\acute{e}\)s, J.: Achieving coordination tasks in finite time via nonsmooth gradient flows. 44th IEEE Conference on Decision and Control, pp. 6376–6381 (2005)

    Google Scholar 

  24. Bliman, P.-A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with delayed communications. 44th IEEE Conference on Decision and Control, pp. 7066–7071 (2005)

    Google Scholar 

  25. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51, 401–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Savkin, A.V.: Coordinated collective motion of groups of autonomous mobile robots: analysis of Vicsek model. IEEE Trans. Autom. Control 49, 981–982 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31, 803–812 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Boyd, S., Ghosh, B., Prabhakar, B., Shah, D.: Gossip algorithms: design, analysis, and applications. Proceedings of IEEE INFOCOM, Miami, vol. 3, pp. 1653–1664 (2005)

    Google Scholar 

  29. Mosk-Aoyama, D., Shah, D.: Fast distributed algorithms for computing separable functions. IEEE Trans. Inf. Theory 54, 2997–3007 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Koubarakis, M., Tryfonopoulos, C., Idreos, S., Drougas, Y.: Selective information dissemination in P2P networks: problems and solutions. SIGMOD Rec. 32, 71–76 (2003)

    Article  Google Scholar 

  31. Bicchi, A., Danesi, A., Dini, G., La Porta, S., Pallottino, L., Savino, I.M., Schiavi, R.: Heterogeneous wireless multirobot system. IEEE Robot. Autom. Mag. 15(1), 62–70 (2008)

    Google Scholar 

  32. Belhoul, A.A., Sekercioglu, Y.A., Mani, N.: Mobility protocols and RSVP performance in wireless IPv6 networks: shortcomings and solutions. Wirel. Commun. Mob. Comput. 8, 1183–1199 (2008)

    Article  Google Scholar 

  33. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. Structural Information and Communication Complexity, pp. 1–9. Springer, Berlin (2006)

    Google Scholar 

  34. Tron, R., Vidal, R.: Distributed algorithms for camera sensor networks. IEEE Signal Process. Mag. (2001)

    Google Scholar 

  35. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems. Commun. ACM 43, 45–48 (2000)

    Article  Google Scholar 

  36. Mui, L.: Computational models of trust and reputation: agents, evolutionary games, and social networks (2002). http://groups.csail.mit.edu/medg/medg/people/lmui/docs

  37. Liu, Y., Yang, Y.R.: Reputation propagation and agreement in wireless Ad Hoc networks. IEEE Wirel. Commun. Netw. Conf. 3, 1510–1515 (2003)

    Google Scholar 

  38. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: Distributed Kalman filtering based on consensus strategies. IEEE J. Sel. Areas Commun. 26, 622–633 (2008)

    Article  Google Scholar 

  39. Yu, W., Chen, G., Wang, Z., Yang, W.: Distributed consensus filtering in sensor networks. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39, 1568–1577 (2009)

    Article  Google Scholar 

  40. Colandairaj, J., Irwin, G.W., Scanlon, W.G.: An integrated approach to wireless feedback control. Presented at the UKACC International Control Conference, Glasgow (2006)

    Google Scholar 

  41. Chen, J., Johansson, K., Olariu, S., Pachalidis, I.C., Stojmenovic, I.: Special issue on wireless sensor and actuator networks. Trans. Autom. Control 56, 2244–2246 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabato Manfredi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manfredi, S. (2017). Multilayer Control System Framework for Cyber-Physical Systems. In: Multilayer Control of Networked Cyber-Physical Systems. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-41646-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41646-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41645-8

  • Online ISBN: 978-3-319-41646-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics