Skip to main content

Abstract

In the present paper we detail the implementation of the Virtual Element Method for two dimensional elliptic equations in primal and mixed form with variable coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. P.F. Antonietti, L. Beirão da Veiga, D. Mora, M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (1), 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Methods Eng. 65 (13), 2167–2202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Babuska, U. Banerjee, J.E. Osborn, Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12, 1–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Beirão da Veiga, G. Manzini, A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2), 759–781 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Beirão da Veiga, F. Brezzi, L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Beirão da Veiga, K. Lipnikov, G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. MS&A, Modeling, Simulation and Applications, vol. 11 (Springer, Berlin, 2014)

    Google Scholar 

  10. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, H(div) and H(curl)-conforming VEM. Numer. Math. 133 (2), 303–332 (2015)

    Article  MATH  Google Scholar 

  11. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (3), 727–747 (2016)

    Google Scholar 

  12. L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo virtual element methods for general second order elliptic problems on polygonal meshes. Math. Models Methods. Appl. Sci. 26 (4), 729–750 (2016)

    Google Scholar 

  13. M.F. Benedetto, S. Berrone, S. Pieraccini, S. Scialò, The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280, 135–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. J.E. Bishop, A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Eng. 97 (1), 1–31 (2014)

    Article  MathSciNet  Google Scholar 

  15. F. Brezzi, L.D. Marini, Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Brezzi, R.S. Falk, L.D. Marini, Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48 (4), 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Chinosi, L.D. Marini, Virtual Element Methods for fourth order problems: L 2 Estimates. Comput. Math. Appl. (2016)

    Google Scholar 

  18. B. Cockburn, The hybridizable discontinuous Galerkin methods, in Proceedings of the International Congress of Mathematicians, vol. IV (Hindustan Book Agency, New Delhi, 2010), pp. 2749–2775

    MATH  Google Scholar 

  19. D. Di Pietro, A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C.R. Acad. Sci. Paris. Ser. I 353, 31–34 (2015)

    Google Scholar 

  20. J. Droniou, R. Eymard, T. Gallouët, R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (13), 2395–2432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.S. Floater, Generalized barycentric coordinates and applications. Acta Numer. 24, 215–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. T.-P. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84 (3), 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  23. A.L. Gain, C. Talischi, G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  MathSciNet  Google Scholar 

  24. R.V. Garimella, J. Kim, M. Berndt, Polyhedral mesh generation and optimization for non-manifold domains, in Proceedings of the 22nd International Meshing Roundtable, ed. by J. Sarrate, M. Staten (Springer, Berlin, 2013)

    Google Scholar 

  25. D. Mora, G. Rivera, R. Rodríguez, A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (08), 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Sukumar, E.A. Malsch, Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13 (1), 129–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes, Polygonal finite elements for topology optimization: a unifying paradigm. Int. J. Numer. Methods Eng. 82 (6), 671–698 (2010)

    MATH  Google Scholar 

  28. C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. J. Struct. Multidiscip. Optim. 45 (3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83 (289), 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Russo .

Editor information

Editors and Affiliations

Appendix

Appendix

We list here the basis \(\boldsymbol{g}_{\alpha }^{\nabla,k}\) and \(\boldsymbol{g}_{\gamma }^{\oplus,k}\) obtained with MATLAB for k up to 5. We point out that in order to have the right scaling, the variable x and y must be replaced by \(\Big(\dfrac{x - x_{c}} {h_{E}} \Big)\) and \(\Big(\dfrac{x - y_{c}} {h_{E}} \Big)\) respectively.

\(\boldsymbol{g}_{\alpha }^{\nabla,k}\) \(\boldsymbol{g}_{\gamma }^{\oplus,k}\)

k=1     [         1,         0]    [             -y,       x]

        [         0,         1]

        [       2*x,         0]

        [         y,         x]

        [         0,       2*y]

k=2     [     3*x^2,         0]    [       -(x*y)/2,     x^2]

        [     2*x*y,       x^2]    [         -2*y^2,     x*y]

        [       y^2,     2*x*y]

        [         0,     3*y^2]

k=3     [     4*x^3,         0]    [     -(x^2*y)/3,     x^3]

        [   3*x^2*y,       x^3]    [         -x*y^2,   x^2*y]

        [   2*x*y^2,   2*x^2*y]    [         -3*y^3,   x*y^2]

        [       y^3,   3*x*y^2]

        [         0,     4*y^3]

k=4     [     5*x^4,         0]    [     -(x^3*y)/4,     x^4]

        [   4*x^3*y,       x^4]    [ -(2*x^2*y^2)/3,   x^3*y]

        [ 3*x^2*y^2,   2*x^3*y]    [   -(3*x*y^3)/2, x^2*y^2]

        [   2*x*y^3, 3*x^2*y^2]    [         -4*y^4,   x*y^3]

        [       y^4,   4*x*y^3]

        [         0,     5*y^4]

k=5     [     6*x^5,         0]    [     -(x^4*y)/5,     x^5]

        [   5*x^4*y,       x^5]    [   -(x^3*y^2)/2,   x^4*y]

        [ 4*x^3*y^2,   2*x^4*y]    [       -x^2*y^3, x^3*y^2]

        [ 3*x^2*y^3, 3*x^3*y^2]    [       -2*x*y^4, x^2*y^3]

        [   2*x*y^4, 4*x^2*y^3]    [         -5*y^5,   x*y^4]

        [       y^5,   5*x*y^4]

        [         0,     6*y^5]

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A. (2016). Virtual Element Implementation for General Elliptic Equations. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_2

Download citation

Publish with us

Policies and ethics