Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 114))

  • 1517 Accesses

Abstract

In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. The time discretization is performed by several classes of Runge-Kutta methods (strongly A-stable or explicit stabilized methods). We discuss the construction and the analysis of such methods for a range of problems, from linear parabolic problems to nonlinear monotone parabolic problems in the very general L p(W 1, p) setting. We also show that under appropriate assumptions, a computationally attractive linearized method can be constructed for nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We concentrate on simplicial elements for simplicity but note that many results presented in this paper can be extended to rectangular elements (see for example [9]).

References

  1. A. Abdulle, Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23, 2041–2054 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4, 447–459 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, in Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. GAKUTO International Series. Mathematical Sciences and Applications, vol. 31 (Gakkōtosho, Tokyo, 2009), pp. 133–181

    Google Scholar 

  4. A. Abdulle, A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 16, 280–305 (2011)

    MathSciNet  MATH  Google Scholar 

  5. A. Abdulle, M.E. Huber, Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization. Numer. Methods Partial Differ. Equ. 32 (3), 737–1104

    Google Scholar 

  6. A. Abdulle, M.E. Huber, Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems. ESAIM Math. Model. Numer. Anal. doi: http://dx.doi.org/10.1051/m2an/2016003

    Google Scholar 

  7. A. Abdulle, A.A. Medovikov, Second order Chebyshev methods based on orthogonal polynomials. Numer. Math. 90, 1–18 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Abdulle, C. Schwab, Heterogeneous multiscale FEM for diffusion problems on rough surfaces. Multiscale Model. Simul. 3, 195–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Abdulle, G. Vilmart, Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis. Math. Models Methods Appl. Sci. 22, 1250002/1–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Abdulle, G. Vilmart, Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Math. Comput. 83, 513–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Abdulle, W. E, Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191, 18–39 (2003)

    Google Scholar 

  12. A. Abdulle, Y. Bai, G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems. Int. J. Numer. Methods Eng. 99, 469–486 (2014)

    Article  MathSciNet  Google Scholar 

  13. A. Abdulle, M.E. Huber, G. Vilmart, Linearized numerical homogenization method for nonlinear monotone parabolic multiscale problems. Multiscale Model. Simul. 13, 916–952 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Allaire, M. Briane, Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinburgh Sect. A 126, 297–342 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Allaire, R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4, 790–812 (2005) (electronic)

    Google Scholar 

  16. I. Babuška, J.E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.W. Barrett, W.B. Liu, Finite element approximation of the parabolic p-Laplacian. SIAM J. Numer. Anal. 31, 413–428 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)

    MATH  Google Scholar 

  19. L. Bers, F. John, M. Schechter, Partial differential equations, in Proceedings of the Summer Seminar. Lectures in Applied Mathematics, Boulder, CO (1957)

    Google Scholar 

  20. M.E. Brewster, G. Beylkin, A multiresolution strategy for numerical homogenization. Appl. Comput. Harmon. Anal. 2, 327–349 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Chiadò Piat, G. Dal Maso, A. Defranceschi, G-convergence of monotone operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 123–160 (1990)

    MathSciNet  MATH  Google Scholar 

  22. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4 (North-Holland, Amsterdam, 1978)

    Google Scholar 

  23. P.G. Ciarlet, P.A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic, New York, 1972), pp. 409–474

    Book  Google Scholar 

  24. M. Crouzeix, Approximation of Parabolic Equations (2005). Lecture notes available at http://perso.univ-rennes1.fr/michel.crouzeix/.

  25. M. Crouzeix, S. Larsson, S. Piskarëv, V. Thomée, The stability of rational approximations of analytic semigroups. BIT 33, 74–84 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Dal Maso, A. Defranceschi, Correctors for the homogenization of monotone operators. Differ. Integr. Equ. 3, 1151–1166 (1990)

    MathSciNet  MATH  Google Scholar 

  27. L. Diening, C. Ebmeyer, M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 45, 457–472 (2007) (electronic)

    Google Scholar 

  28. R. Du, P. Ming, Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 8, 863–885 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods. Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4 (Springer, New York, 2009)

    Google Scholar 

  30. Y. Efendiev, A. Pankov, Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2, 237–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Engquist, O. Runborg, Wavelet-based numerical homogenization with applications, in Multiscale and Multiresolution Methods. Lecture Notes in Computational Science and Engineering, vol. 20 (Springer, Berlin, 2002), pp. 97–148

    Google Scholar 

  32. M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 2175–2182 (2010)

    Article  MATH  Google Scholar 

  33. A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5, 996–1043 (2006) (electronic)

    Google Scholar 

  34. A. Gloria, Reduction of the resonance error. Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21, 1601–1630 (2011)

    Google Scholar 

  35. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin/Heidelberg, 1996)

    Google Scholar 

  36. P. Henning, M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Cont. Dyn. Syst. Ser. S 8, 119–150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. SIAM Multiscale Model. Simul. 11, 1149–1175 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. T.Y. Hou, X.-H. Wu, Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin/Heidelberg, 1994)

    Book  Google Scholar 

  41. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  42. O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, vol. 49 (Springer, New York, 1985)

    Google Scholar 

  43. V. Lebedev, How to solve stiff systems of differential equations by explicit methods, in Numerical Methods and Applications, ed. by G.I. Marčuk (CRC Press, Boca Raton, 1994), pp. 45–80

    Google Scholar 

  44. C. Lubich, A. Ostermann, Runge-Kutta approximation of quasi-linear parabolic equations. Math. Comput. 64, 601–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Målqvist, A. Persson, Multiscale techniques for parabolic equations (2015). arXiv:1504.08140

    Google Scholar 

  46. A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83, 2583–2603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comput. 76, 153–177 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Owhadi, L. Zhang, Metric-based upscaling. Commun. Pure Appl. Math. 60, 675–723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Pankov, G -Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications, vol. 422 (Kluwer Academic Publishers, Dordrecht, 1997)

    Google Scholar 

  51. B.P. Sommeijer, J.G. Verwer, A performance evaluation of a class of Runge-Kutta-Chebyshev methods for solving semi-discrete parabolic differential equations. Tech. rep., Stichting Mathematisch Centrum. Numerieke Wiskunde, Amsterdam, 1980. Report NW91/80

    Google Scholar 

  52. N. Svanstedt, G-convergence of parabolic operators. Nonlinear Anal. 36, 807–842 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25 (Springer, Berlin, 1997)

    Google Scholar 

  54. P. van der Houwen, B.P. Sommeijer, On the internal stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60, 479–485 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  55. W. E, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)

    Google Scholar 

  56. W. E, P. Ming, P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18, 121–156 (2005)

    Google Scholar 

  57. E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B (Springer, New York, 1990). Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron

    Google Scholar 

Download references

Acknowledgement

This research is partially supported by the Swiss National Foundation under Grant 200021_150019. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assyr Abdulle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdulle, A. (2016). Numerical Homogenization Methods for Parabolic Monotone Problems. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_1

Download citation

Publish with us

Policies and ethics