Skip to main content

Selected Models for Dynamics of Research Organizations and Research Production

  • Chapter
  • First Online:
Science Dynamics and Research Production

Abstract

The understanding of dynamics of research organizations and research production is very important for their successful management. In the text below, selected deterministic and probability models of research dynamics are discussed. The idea of the selection is to cover mainly the areas of publications dynamics, citations dynamics, and aging of scientific information. From the class of deterministic models we discuss models connected to research publications (SI-model, Goffmann–Newill model, model of Price for growth of knowledge), deterministic model connected to dynamics of citations (nucleation model of growth dynamics of citations), deterministic models connected to research dynamics (logistic curve models, model of competition between systems of ideas, reproduction–transport equation model of evolution of scientific subfields), and a model of science as a component of the economic growth of a country. From the class of probability models we discuss a probability model connected to research publications (based on the Yule process), probability models connected to dynamics of citations (Poisson and mixed Poisson models, models of aging of scientific information (death stochastic process model and birth stochastic process model connected to Waring distribution)). The truncated Waring distribution and the multivariate Waring distribution are described, and a variational approach to scientific production is discussed. Several probability models of production/citation process (Paretian and Poisson distribution models of the h-index) as well as GIGP model distribution of bibliometric data are presented. A stochastic model of scientific productivity based on a master equation is described, and a probability model for the importance of the human factor in science is discussed. The chapter ends by providing information about some models and distributions connected to informetrics: limited dependent variable models for data analysis and the generalized Zipf distribution and its connection to the Waring distribution and Yule distribution.

Dedicated to the memory of Anatoly Yablonsky. His studies on mathematical models of science contributed much to my interest in mathematical modeling of social and economic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The form of this distribution may be written as

    $$\begin{aligned} f(x) = \frac{(a/b)^{p/2}}{2 K_p(\sqrt{ab})}x^{(p-1)} \exp [-(ax+b/x)/2], \end{aligned}$$

    where \(x>0\), \(K_p\) is the modified Bessel function of the second kind, \(a>0\), \(b>0\), and p is a real parameter [169].

References

  1. D. de Solla Price. Little Science, Big Science. (Columbia University Press, New York, 1963)

    Google Scholar 

  2. D.P. Wallace, The relationship between journal productivity and obsolescence. J. Am. Soc. Inf. Sci. 37, 136–145 (1986)

    Article  Google Scholar 

  3. L. Egghe, On the influence of growth on obsolescence. Scientometrics 27, 195–214 (1993)

    Article  Google Scholar 

  4. W. Glänzel, U. Schoepflin, A bibliometric study on ageing and reception process of scientific literature. J. Inf. Sci. 21, 37–53 (1995)

    Article  Google Scholar 

  5. W. Goffman, V.A. Newill, Generalization of epidemic theory. An application to the transmission of ideas. Nature 204(4955), 225–228 (1964)

    Article  Google Scholar 

  6. P. Nyhius, Logistic curves, in CIPR encyclopedia of production engineering, ed. by L. Laperriere, G. Reinhart (Springer, Berlin, 2014), pp. 759–762

    Chapter  Google Scholar 

  7. A. Fernandez-Cano, M. Torralbo, M. Vallejo, Reconsidering Price’s model of scientific growth: an overview. Scientometrics 61, 301–321 (2004)

    Article  Google Scholar 

  8. V. Volterra, Population growth, equilibria, and extinction under specified breeding conditions: a development and extension of the theory of the logistic curve, in The Golden Age of Theoretical Ecology: 1923–1940, ed. by F.M. Scudo, J.E. Ziegler (Springer, Berlin, 1978), pp. 18–27

    Chapter  Google Scholar 

  9. C.-Y. Wong, L. Wang, Trajectories of science and technology and their co-evolution in BRICS: Insigths from publication and patent analysis. J. Inf. 9, 90–101 (2015)

    Article  Google Scholar 

  10. L. Egghe, I.K. Ravichandra, Rao. Classification of growth models based on growth rates and its applications. Scientometrics 25, 5–46 (1992)

    Article  Google Scholar 

  11. P.S. Meyer, Bi-logistic growth. Technol. Forecast. Soc. Chang. 47, 89–102 (1994)

    Article  Google Scholar 

  12. M. Ausloos, On religion and language evolutions seen through mathematical and agent based models, in Proceedings of the First Interdisciplinary CHESS Interactions Conference, ed. by C. Rangacharyulu, E. Haven (World Scientific, Singapore, 2010), pp. 157–182

    Chapter  Google Scholar 

  13. P.S. Meyer, J.W. Yung, J.H. Ausubel, A primer on logistic growth and substitution: the mathematics of the Loglet Lab software. Technol. Forecast. Soc. Chang. 61, 247–271 (1999)

    Article  Google Scholar 

  14. H.W. Menard, Science: Growth and Change (Harvard University Press, Cambridge, MA, 1971)

    Book  Google Scholar 

  15. G.N. Gilbert, Measuring the growth of science: a review of indicators of scientific growth. Scientometrics 1, 9–34 (1978)

    Article  Google Scholar 

  16. D. Wolfram, C.M. Chu, X. Lu, Growth of knowledge: bibliometric analysis using online database data, in Informetrics 89/90, ed. by L. Egghe, R. Rousseau (Elsevier, Amsterdam, 1990), pp. 355–372

    Google Scholar 

  17. G.O. Ware, A general statistical model for estimating future demand levels of data-base utilization within an information retrieval organization. J. Am. Soc. Inf. Sci. 24, 261–264 (1973)

    Article  Google Scholar 

  18. N. Bailey, Some stochastic models for small epidemics in large populations. Appl. Stat. 13, 9–19 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.S. Bartlet, Stochastic Population Models in Ecology and Epidemiology (Wiley, New York, 1960)

    Google Scholar 

  20. W. Goffman, An epidemic process in an open population. Nature 205, 831–832 (1965)

    Article  MATH  Google Scholar 

  21. D. Mollison, Dependence of epidemic and population velocities on basic parameters. Math. Biosci. 107, 255–287 (1991)

    Article  MATH  Google Scholar 

  22. F.C. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics (SIAM, Philadelphia, PA, 1975)

    Google Scholar 

  23. K. Cooke, P. van den Driessche, X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Colizza, A. Barnat, M. Barthelemy, A. Vespigniani, The modeling of global epidemics: stochastic dynamics and predictability. Bull. Math. Biol. 68, 1893–1921 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. R.M. May, Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)

    Article  Google Scholar 

  27. H. Caswell, Matrix Population Models (Wiley, New York, 2001)

    Google Scholar 

  28. R.D. Holt, Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theoretical Population Biology 28, 181–208 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. M.P. Hassell, H.N. Comins, R.M. May, Spatial structure and chaos in insect population dynamics. Nature 353(6341), 255–258 (1991)

    Article  Google Scholar 

  30. Z. Ma, J. Li, Basic knowledge and developing tendencies in epidemic dynamics, in Mathematics for Life Sciences and Medicine, ed. by Y. Takeuchi, Y. Iwasa, K. Sato (Springer, Berlin, 2007), pp. 5–49

    Google Scholar 

  31. N.K. Vitanov, M. Ausloos, Knowledge epidemic and population dynamics models for describing idea diffusion, in Models for Science Dynamics, ed. by A. Scharnhorst, K. Börner, P. van den Besselar (Springer, Berlin, 2012), pp. 69–125

    Chapter  Google Scholar 

  32. C. Antonelli, The Economics of Localized Technological Change and Industrial Dynamics (Kluwer, Dordrecht, 1995)

    Book  Google Scholar 

  33. P. Anderson, Perspective: complexity theory and organization science. Organ. Sci. 10, 216–232 (1999)

    Article  Google Scholar 

  34. M.A. Nowak, Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  Google Scholar 

  35. W. Weidlich, G. Haag, Concepts and Models of a Quantitative Sociology: The Dynamics of Interacting Populations (Springer, Berlin, 1983)

    Book  MATH  Google Scholar 

  36. D. Strang, Adding social structure to diffusion models. Sociol. Methods Res. 19, 324–353 (1991)

    Article  Google Scholar 

  37. P.A. Geroski, Models of technology diffusion. Res. Policy 29, 603–625 (2000)

    Article  Google Scholar 

  38. C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)

    Article  Google Scholar 

  39. N.K. Vitanov, Z.I. Dimitrova, Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics. Commun. Nonlinear Sci. Numer. Simul. 15, 2836–2845 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Baptista, The diffusion of process innovations: a selective review. Int. J. Econ. Bus. 6, 107–129 (1999)

    Article  Google Scholar 

  41. I.Z. Kiss, M. Broom, P.G. Craze, I. Rafols, Can epidemic models describe the diffusion of topics across disciplines? J. Inf. 4, 74–82 (2010)

    Article  Google Scholar 

  42. H.G. Landau, A. Rapoport, Contribution to the mathematical theory of contagion and spread of information. I: spread through a thoroughly mixed population. Bull. Math. Biophys. 15, 173–183 (1953)

    Article  MathSciNet  Google Scholar 

  43. W. Goffman, Mathematical approach to the spread of scientific ideas—the history of mast cell research. Nature 212, 449–452 (1966)

    Article  Google Scholar 

  44. A. Lotka, Elements of Physical Biology (Williams and Wilkins, Baltomore, 1925)

    MATH  Google Scholar 

  45. V. Volterra, Variations and fluctuations of the number of individuals in animal species living together. Journal du Conseil/Conseil Permanent International pour l’Exploration de la Mer 3, 3–52 (1928)

    Article  Google Scholar 

  46. F.J. Ayala, M.E. Gilpin, J.G. Ehrenfeld, Competition between species: theoretical models and experimental tests. Theor. Popul. Biol. 4, 331–356 (1973)

    Article  MathSciNet  Google Scholar 

  47. M.E. Gilpin, F.J. Ayala, Global models of growth and competition. PNAS 70, 3590–3593 (1973)

    Article  MATH  Google Scholar 

  48. R.D. Holt, J. Pickering, Infectious disease and species coexistence: a model of Lotka-Volterra form. Am. Nat. 126, 196–211 (1985)

    Article  Google Scholar 

  49. Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems (World Scientific, Singapore, 1996)

    Book  MATH  Google Scholar 

  50. A. Castiaux, Radical innovation in established organizations: being a knowledge predator. J. Eng. Technol. Manag. 24, 36–52 (2007)

    Article  Google Scholar 

  51. K. Dietz, Epidemics and rumors: a survey. J. R. Stat. Soc. A 130, 505–528 (1967)

    Article  MathSciNet  Google Scholar 

  52. S. Solomon, P. Richmond, Power laws of wealth, market order volumes and market returns. Phys. A 299, 188–197 (2001)

    Article  MATH  Google Scholar 

  53. S. Solomon, P. Richmond, Stable power laws in variable economics. Lotka—Volterra implies Pareto—Zipf. Eur. Phys. J. B 27, 257–261 (2002)

    Google Scholar 

  54. W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  55. M. Nowakowska, Epidemical spread of scientific objects: an attempt of empirical approach to some problems of meta—science. Theory Decis. 3, 262–297 (1973)

    Article  Google Scholar 

  56. D.J. Daley, Concerning the spread of news in a population of individuals who never forget. Bull. Math. Biophys. 29, 373–376 (1967)

    Article  Google Scholar 

  57. A.D. Barbour, S. Utev, Approximating the Reed-Frost epidemic process. Stoch. Process. Appl. 113, 173–197 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Abbey, An examination of the Reed-Frost theory of epidemics. Hum. Biol. 24, 201–233 (1952)

    Google Scholar 

  59. J.A. Jacquez, A note on chain-binomial models of epidemic spread: what is wrong with the Reed-Frost formulation? Math. Biosci. 87, 73–82 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  60. W. Goffman, V.A. Newill, Communication and epidemic process. Proc. R. Soc. Lond. Ser. A 298, 316–334 (1967)

    Article  MATH  Google Scholar 

  61. G. Harmon, Remembering William Goffman: mathematical information science pioneer. Inf. Process. Manag. 44, 1634–1647 (2008)

    Article  Google Scholar 

  62. M. Cohen, A. Blaivas, A model for the growth of mathematical specialties. Scientometrics 3, 265–273 (1981)

    Article  Google Scholar 

  63. B.M. Gupta, L. Sharma, C.R. Karisiddappa, Modelling the growth of papers in a scientific speciality. Scientometrics 33, 187–201 (1995)

    Article  Google Scholar 

  64. M. Kochen, Stability and growth of knowledge. Am. Doc. 20, 186–197 (1969)

    Article  Google Scholar 

  65. A.N. Tabah, Literature dynamics: studies on growth, diffusion and epidemics. Annu. Rev. Inf. Sci. Technol. 34, 249–286 (1999)

    Google Scholar 

  66. B.M. Gupta, P. Sharma, C.R. Karisiddappa, Growth of research literature in scientific specialities. A modeling perspective. Scientometrics 40, 507–528 (1997)

    Article  Google Scholar 

  67. B.M. Gupta, S. Kumar, S.L. Sangam, C.R. Karisiddappa, Modeling the growth of world social science literature. Scientometrics 53, 161–164 (2002)

    Article  Google Scholar 

  68. L.M.A. Bettencourt, A. Cintron-Arias, D.I. Kaiser, C. Castillo-Chavez, The power of a good idea: quantitative modeling of the spread of ideas from epidemiological models. Phys. A 364, 513–536 (2002)

    Article  Google Scholar 

  69. L.M.A. Bettencourt, D.I. Kaiser, J. Kaur, C. Castillo-Chavez, D.E. Wojick, Population modeling of the emergence and development of scientific fields. Scientometrics 75, 495–518 (2008)

    Article  Google Scholar 

  70. M. Szydlowski, A. Krawiez, Growth cycles of knowledge. Scientometrics 78, 99–111 (2009)

    Article  Google Scholar 

  71. D.J. de Solla Price, The exponential curve of science. Discovery 17, 240–243 (1956)

    Google Scholar 

  72. K. Sangwal, Progressive nucleation mechanism and its application to the growth of journals, articles and authors in scientific fields. J. Inf. 5, 529–536 (2011)

    Article  Google Scholar 

  73. K. Sangwal, On the growth of citations of publication output of individual authors. J. Inf. 5, 554–564 (2011)

    Article  Google Scholar 

  74. K. Sangwal, Progressive nucleation mechanism of the growth behavior of items and its application to cumulative papers and citations of individual authors. Scientometrics 92, 643–655 (2012)

    Article  Google Scholar 

  75. K. Sangwal, Growth dynamics of citations of cumulative papers of individual authors according to progressive nucleation mechanism: concept of citation acceleration. Inf. Process. Manag. 49, 757–772 (2013)

    Article  Google Scholar 

  76. D. Kashchiev, Nucleation: Basic theory with applications (Butterworth-Heinemann, Oxford, 2000)

    Google Scholar 

  77. E.H. Kerner, Further considerations on the statistical mechanics of biological associations. Bull. Math. Biophys. 21, 217–253 (1959)

    Article  MathSciNet  Google Scholar 

  78. J.C. Allen, Mathematical model of species interactions in time and space. Am. Nat. 109, 319–342 (1975)

    Article  Google Scholar 

  79. A. Okubo, Diffusion and Ecological Problems: Mathematical Models (Springer, Berlin, 1980)

    MATH  Google Scholar 

  80. W.G. Willson, A.M. de Roos, Spatial instabilities within the diffusive Lotka—Volterra system: individual—based simulation results. Theor. Popul. Biol. 43, 91–127 (1993)

    Article  MATH  Google Scholar 

  81. Y.F. le Coadic, Information system and the spread of scientific ideas. R&D Manag. 4, 97–111 (1974)

    Article  Google Scholar 

  82. E. Bruckner, W. Ebeling, A. Scharnhorst, The application of evolution models in scientometrics. Scientometrics 18, 21–41 (1990)

    Article  Google Scholar 

  83. N.K. Vitanov, I.P. Jordanov, Z.I. Dimitrova, On nonlinear population waves. Appl. Math. Comput. 215, 2950–2964 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  84. N.K. Vitanov, I.P. Jordanov, Z.I. Dimitrova, On nonlinear dynamics of interacting populations: coupled kink waves in a system of two populations. Commun. Nonlinear Sci. Numer. Simul. 14, 2379–2388 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  85. N.K. Vitanov, Z.I. Dimitrova, M. Ausloos, Verhulst-Lotka-Volterra (VLV) model of ideological struggle. Phys. A 389, 4970–4980 (2010)

    Article  MATH  Google Scholar 

  86. N.K. Vitanov, M. Ausloos, G. Rotundo, Discrete model of ideological struggle accounting for migration. Adv. Complex Syst. 15, Article No. 1250049 (2012)

    Google Scholar 

  87. W. Ebeling, A. Scharnhorst, Evolutionary models of innovation dynamics, in Traffic and Granular Flow’99. Social, Traffic and Granular Dynamics, ed. by D. Helbing, H.J. Herrman, M. Schekenberg, D.E. Wolf (Springer, Berlin, 2000), pp. 43–56

    Google Scholar 

  88. E. Borensztein, J. De Gregorio, J.-W. Lee, How does foreigh direct investment affect economic growth? J. Int. Econ. 45, 115–135 (1998)

    Article  Google Scholar 

  89. J. Dedrick, V. Gurbaxani, K.L. Kraemer, Information technology and economic performance: a critical review of the empirical evidence. ACM Comput. Surv. 35, 1–28 (2003)

    Article  Google Scholar 

  90. S.W. Popper, C. Wagner, New foundations of growth: The U.S. innovation system today and tomorrow. RAND MR-1338.0/1-OSTP (2001)

    Google Scholar 

  91. E. Mansfield, Industrial Research and Technological Innovation: An Econometric Analysis (Norton, New York, 1968)

    Google Scholar 

  92. A.I. Yablonskii, Mathematical Methods in the Study of Science (Nauka, Moscow, 1986). (in Russian)

    Google Scholar 

  93. C.W. Cobb, P.H. Douglas, A theory of production. Am. Econ. Rev. 18(Supplement), 139–165 (1928)

    Google Scholar 

  94. A. Aulin, The Impact of Science on Economic Growth and its Cycles (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  95. Q.L. Burell, Predictive aspects of some bibliometric processes, in Informetrics 87/88, ed. by L. Egghe, R. Rousseau (Elsevier, Amsterdam, 1988), pp. 43–63

    Google Scholar 

  96. Q.L. Burrell, A note on ageing in a library circulation model. J. Doc. 41, 100–115 (1985)

    Article  Google Scholar 

  97. D.R. Cox, Some statistical methods connected with series of events (with discussion). J. R. Stat. Soc. B 17, 129–164 (1955)

    MATH  Google Scholar 

  98. J. Grandell, Doubly stochastic Poisson processes, vol. 529, Lecture Notes in Mathematics (Springer, Berlin, 1976)

    MATH  Google Scholar 

  99. H.S. Sichel, On a distribution representing sentence-length in written prose. J. R. Stat. Soc. A 137, 25–34 (1974)

    Article  Google Scholar 

  100. H.S. Sichel, Repeat-buying and the generalized inverse Gaussian-Poisson distribution. Appl. Stat. 31, 193–204 (1982)

    Article  Google Scholar 

  101. J.O. Irvin, The generalized Waring distribution. Part I. J. R. Stat. Soc. A 138, 18–21 (1975)

    Google Scholar 

  102. J.O. Irvin, The generalized Waring distribution. Part II. J. R. Stat. Soc. A 138, 204–227 (1975)

    Article  Google Scholar 

  103. J.O. Irvin, The generalized Waring distribution. Part III. J. R. Stat. Soc. A 138, 374–384 (1975)

    Article  Google Scholar 

  104. A.I. Yablonsky, Mathematical Models in Science Studies (Nauka, Moscow, 1986). (in Russian)

    Google Scholar 

  105. G.U. Yule, A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S. Philos. Trans. R. Soc. B 213, 21–87 (1925)

    Article  Google Scholar 

  106. H.A. Simon, C.P. Bonini, The size distribution of business firms. Am. Econ. Rev. 48, 607–617 (1958)

    Google Scholar 

  107. M. Brown, S. Ross, R. Shorrock, Evacualtion of a Yule process with immigration. J. Appl. Probab. 12, 807–811 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  108. N. O’Connell, Yule process approximation for the skeleton of a branching process. J. Appl. Probab. 30, 725–729 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  109. D.J. Aldous, Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat. Sci. 16, 23–34 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  110. S. Redner, How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4, 131–134 (1998)

    Article  Google Scholar 

  111. S. Redner, Citation statistics from 110 years of physical review. Phys. Today 58, 49–54 (2005)

    Article  Google Scholar 

  112. C.C. Sarli, E.K. Dubinsky, K.L. Holmes, Beyond citation analysis: a model for assessment of research impact. J. Med. Libr. Assoc. 98, 17–23 (2010)

    Article  Google Scholar 

  113. M.Y. Wang, G. Yu, D.R. Yu, Minimg typical features for highly cited papers. Scientometrics 87, 695–706 (2011)

    Article  Google Scholar 

  114. M. Wang, G. Yu, S. An, D. Yu, Discovery of factors influencing citation impact based on a soft fuzzy rough set model. Scientometrics 93, 635–644 (2012)

    Article  Google Scholar 

  115. Q.L. Burrell, Stochastic modeling of the first-citation distribution. Scientometrics 52, 3–12 (2001)

    Article  Google Scholar 

  116. L. Egghe, I.K. Ravichandra Rao, Citation age data and the obsolescence function: fits and explanations. Inf. Process. Manag. 28, 201–217 (1992)

    Article  Google Scholar 

  117. R. Rousseau, Double exponential models for first-citation processes. Scientometrics 30, 213–227 (1994)

    Article  Google Scholar 

  118. L. Egghe, A heuristic study of the first-citation distribution. Scientometrics 48, 345–359 (2000)

    Article  Google Scholar 

  119. D.R. Cox, V.I. Isham, Point Processes (Chapman & Hall, London, 1980)

    MATH  Google Scholar 

  120. J.F.C. Kingman, Poisson processes (Clarendon Press, Oxford, 1992)

    MATH  Google Scholar 

  121. T. Mikosch, Non-life Insurance Mathematics. An Introduction with the Poisson Process (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  122. H.C. Tijms, A First Course in Stochastic Models (Wiley, Chichester, 2003)

    Book  MATH  Google Scholar 

  123. S. Nadarajan, S. Kotz, Models for citations behavior. Scientometrics 72, 291–305 (2007)

    Article  Google Scholar 

  124. S.M. Ross, Stochastic Processes (Wiley, New York, 1996)

    MATH  Google Scholar 

  125. Q.L. Burrell, The \(n\)-th citation distribution and obsolescence. Scientometrics 53, 309–323 (2002)

    Article  Google Scholar 

  126. A.F.J. van Raan, Sleeping beauties in science. Scientometrics 59, 467–472 (2004)

    Article  Google Scholar 

  127. Q.L. Burrell, Are “sleeping beauties” to be expected? Scientometrics 6, 381–389 (2005)

    Article  Google Scholar 

  128. J. Grandell, Mixed Poisson processes (Chapman & Hall, London, 1997)

    Book  MATH  Google Scholar 

  129. S.A. Klugman, H.H. Panjer, G.E. Wilmot, Loss Models. From Data to Decisions (Wiley, Hoboken, NJ, 2008)

    Book  MATH  Google Scholar 

  130. M. Bennet, Stochastic Processes in Science, Engineering and Finance (Chapman & Hall, Boca Raton, FL, 2006)

    Google Scholar 

  131. R.-D. Reiss, M. Thomas, Statistical Analysis of Extreme Values (Birkhäuser, Basel, 1997)

    Book  MATH  Google Scholar 

  132. Q.L. Burrell, A simple stochastic model for library loans. J. Doc. 36, 115–132 (1980)

    Article  Google Scholar 

  133. Q.L. Burrell, Predictive aspects of some bibliometric processes, in Infometrics 87/88, ed. by L. Egghe, R. Rousseau (Amsterdam, Elsevier, 1988), pp. 43–63

    Google Scholar 

  134. Q.L. Burrell, Using the gamma-Poisson model to predict library circulation. J. Am. Soc. Inf. Sci. 41, 164–170 (1990)

    Article  Google Scholar 

  135. J.M. Hilbe, Negative Binomial Regression (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  136. N.L. Johnson, A.W. Kemp, S. Kotz, Univariate Discrete Distributions (Willey, Hoboken, NJ, 2005)

    Book  MATH  Google Scholar 

  137. J.H. Pollard, A Handbook of Numerical and Statistical Techniques: With Examples Mainly from the Life Sciences (Cambridge University Press, Cambridge, 1977)

    Book  MATH  Google Scholar 

  138. M. Greenwood, G.U. Yule, An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or repeated accidents. J. R. Stat. Soc. A 83, 255–279 (1920)

    Article  Google Scholar 

  139. J. Mingers, Q.L. Burrell, Modeling citation behavior in management science journals. Inf. Process. Manag. 42, 1451–1464 (2006)

    Article  Google Scholar 

  140. E.S. Vieira, J.A.N.F. Gomes, Citation to scientific articles: its distribution and dependence on the article features. J. Inf. 4, 1–13 (2010)

    Article  Google Scholar 

  141. C. Lachance, V. Lariviere, On the citation lyfecycle of papers with delayed recognition. J. Inf. 8, 863–872 (2014)

    Article  Google Scholar 

  142. A.I. Yablonskii, Models and Methods of Mathematical Study of Science (AN USSR, Moscow (in Russian), 1977)

    Google Scholar 

  143. A. Schubert, W. Glänzel, A dynamic look at a class of skew distributions. A model with scientometric application. Scientometrics 6, 149–167 (1984)

    Article  Google Scholar 

  144. W. Glänzel, A. Schubert, Predictive aspects of a stochastic model for citation processes. Inf. Process. Manag. 31, 69–80 (1995)

    Article  Google Scholar 

  145. R. Frank, Brand choice as a probability process. J. Bus. 35, 43–56 (1962)

    Article  Google Scholar 

  146. J.S. Coleman, Introduction to Mathematical Sociology (Collier-Macmillan, London, 1964)

    Google Scholar 

  147. H.A. Simon, On a class of skew distribution functions. Biometrica 42, 425–440 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  148. Y. Ijiri, H. Simon, Skew Distributions and the Sizes of Business Firms (North Holland, Amsterdam, 1977)

    MATH  Google Scholar 

  149. J. Eeckhout, Gibrath’s law for (all) cities. Am. Econ. Rev. 94, 1429–1451 (2004)

    Article  Google Scholar 

  150. W. Glänzel, Bibliometrics as a Research Field: A Course on Theory and Application of Bibliometric Indicators (Ungarische Akademie der Wissenschaften, Budapest, 2003)

    Google Scholar 

  151. W. Glänzel, U. Schoepflin, A stochastic model for the ageing of scientific literature. Scientometrics 30, 49–64 (1994)

    Article  Google Scholar 

  152. S. Shan, G. Yang, L. Jiang, The multivariate Waring distribution and its application. Scientometrics 60, 523–535 (2004)

    Article  Google Scholar 

  153. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972)

    MATH  Google Scholar 

  154. Q.L. Burrell, Age-specific citation rates and the Egghe-Rao function. Inf. Process. Manag. 39, 761–770 (2003)

    Article  MATH  Google Scholar 

  155. P. Fronczak, A. Fronczak, J.A. Holyst, Publish or perish: Analysis of scientific productivity using maximum entropy principle and fluctuation-dissipation theorem. Phys. Rev. E 75, Art. No.026103 (2007)

    Google Scholar 

  156. K.G. Zipf, Human Behaviour and the Principle of Least Effort (Addison-Wesley, Cambridge, MA, 1949)

    Google Scholar 

  157. A.I. Yablonsky, On fundamental regularities of the distribution of scientific productivity. Scientometrics 2, 3–34 (1980)

    Article  Google Scholar 

  158. L. Hartman, Technological forecasting, in Multinational Corporate Planning, ed. by G.A. Steiner, W. Cannon (Crowell-Collier Publishing Co., New York, 1966)

    Google Scholar 

  159. G.W. Tyler, A thermodynamic model of manpower system. J. Oper. Res. Soc. 40, 137–139 (1989)

    Article  MATH  Google Scholar 

  160. I.K. Ravichandra Rao, Probability distributions and inequality measures for analysis of circulation data, in Informetrics, ed. by L. Egghe, R. Rousseau (Elsevier, Amsterdam, 1988), pp. 231–248

    Google Scholar 

  161. W. Glänzel, On the \(h\)-index—A mathematical approach to a new measure of publication activity and citation impact. Scientometrics 67, 315–321 (2006)

    Article  Google Scholar 

  162. E.J. Gumbel, Statistics of Extremes (Dover, New York, 2004)

    MATH  Google Scholar 

  163. W. Glänzel, A. Schubert, Price distribution. An exact formulation of Price’s “Square root law”. Scientometrics 7, 211–219 (1985)

    Article  Google Scholar 

  164. H. Boxenbaum, F. Pivinski, S.J. Ruberg, Publication rates of pharmaceutical scientists: application of the Waring distribution. Drug Metab. Rev. 18, 553–571 (1987)

    Article  Google Scholar 

  165. Q.L. Burrell, A simple model for linked infometric processes. Inf. Process. Manag. 28, 637–645 (1992)

    Article  Google Scholar 

  166. Q.L. Burrell, Hirsch’s \(h\)-index: a stochastic model. J. Inf. 1, 16–25 (2007)

    Article  Google Scholar 

  167. H.S. Sichel, A bibliometric distribution which really works. J. Am. Soc. Inf. Sci. 36, 314–321 (1985)

    Article  Google Scholar 

  168. H.S. Sichel, Anatomy of the generalized inverse Gaussian-Poisson distribution with special application to bibliometric studies. Inf. Process. Manag. 28, 5–17 (1992)

    Article  Google Scholar 

  169. L. Perreault, B. Bobee, R. Rasmussen, Halphen distribution system. Mathematical and statistical properties. J. Hydrol. Eng. 4, 189–199 (1999)

    Google Scholar 

  170. H.S. Sichel, Repeat-bying and the generalized inverse Gaussian-Poisson distribution. Appl. Stat. 31, 193–204 (1982)

    Article  Google Scholar 

  171. A.K. Romanov, A.I. Terekhov, The mathematical model of productivity—and age-structured scientific community evolution. Scientometrics 39, 3–17 (1997)

    Article  Google Scholar 

  172. A.K. Romanov, A.I. Terekhov, The mathematical model of the scientific personnel movement taking into account the productivity factor. Scientometrics 33, 221–231 (1995)

    Article  Google Scholar 

  173. P. Vinkler, Correlation between the structure of scientific research, scientometric indicators and GDP in EU and non- EU countries. Scientometrics 74, 237–254 (2008)

    Article  Google Scholar 

  174. L.C. Lee, Y.W. Chuang, Y.Y. Lee, Research output and economic productivity: a Granger causality test. Scientometrics 89, 465–478 (2011)

    Article  Google Scholar 

  175. P.W. Hart, J.T. Sommerfeld, Relationship between growth in gross domestic product (GDP) and growth in the chemical engineering literature in five different countries. Scientometrics 42, 299–311 (1998)

    Article  Google Scholar 

  176. F. de Moya-Anegon, V. Herrero Solana, Science in America Latina: a comparison of bibliometric and scientific-technical indicators. Scientometrics 46, 299–320 (1999)

    Article  Google Scholar 

  177. F. Ye, A quantitative relationship between per capita GDP and scientometric criteria. Scientometrics 71, 407–413 (2007)

    Article  Google Scholar 

  178. J. Sylvan Katz, B.R. Martin, What is research collaboration? Res. Policy 26, 1–18 (1997)

    Article  Google Scholar 

  179. A.F.J. van Raan, Science as an international enterprise. Sci. Public Policy 24, 290–300 (1997)

    Google Scholar 

  180. M. Pezzoni, V. Sterzi, F. Lissoni, Career progress in centralized academic systems: Social capital and institutions in France and Italy. Res. Policy 41, 704–719 (2012)

    Article  Google Scholar 

  181. D.B. de Beaver, R. Rosen, Studies in scientific collaboration: Part I-The professional origins of scientific co-authorship. Scientometrics 1, 65–84 (1979)

    Article  Google Scholar 

  182. D.B. de Beaver, R. Rosen, Studies in scientific collaboration: Part II—Scientific co-authorship, research productivity and visibility in the French scientific elite 1799–1830. Scientometrics 1, 133–149 (1979)

    Article  Google Scholar 

  183. D.B. de Beaver, R. Rosen, Studies in scientific collaboration: Part III—Professionalization and the natural history of modern scientific co-authorship. Scientometrics 1, 231–245 (1979)

    Article  Google Scholar 

  184. T. Luukkonen, O. Persson, G. Sivertsen, Understanding patterns of international scientific collaboration. Sci. Technol. Hum. Values 17, 101–126 (1992)

    Article  Google Scholar 

  185. M. Meyar, O. Persson, Nanotechnology—interdisciplinarity, patters of collaboration and differences in application. Scientometrics 42, 195–205 (1998)

    Article  Google Scholar 

  186. A.E. Andersson, O. Persson, Networking scientists. Ann. Reg. Sci. 27, 11–21 (1993)

    Article  Google Scholar 

  187. G. Melin, O. Persson, Hotel cosmopolitan: a bibliometric study of collaboration at some European universities. J. Am. Soc. Inf. Sci. 49, 43–48 (1998)

    Article  Google Scholar 

  188. P. Mählck, O. Persson, Socio-bibliometric mapping of intra-department networks. Scientometrics 49, 81–91 (2000)

    Article  Google Scholar 

  189. T. Lukkonen, R. Tijssen, O. Persson, G. Sivertsen, The measurement of international scientific collaboration. Scientometrics 28, 15–36 (1993)

    Article  Google Scholar 

  190. C.S. Wagner, L. Leydesdorff, Network structure, self-organization, and the growth of international collaboration in science. Res. Policy 34, 1608–1618 (2005)

    Article  Google Scholar 

  191. R. Stichweh, Science in the system of world society. Soc. Sci. Inf. 35, 327–340 (1996)

    Article  Google Scholar 

  192. B. Jamweit, E. Jettestuen, J. Mathiesen, Scaling properties in European research units. PNAS 106, 13160–13163 (2009)

    Article  Google Scholar 

  193. N. Deschacht, T.C.E. Engels, Limited dependent variable models and probabilistic prediction in informetrics, in Measuring Scholarly Impact. Methods and Practice, ed. by Y. Ding, R. Rousseau, D. Wolfram (Springer, Cham, 2014), pp. 193–214

    Google Scholar 

  194. H.P. Van Dalen, K. Henkens, Signals in science—the importance of signaling in gaining attention in science. Scientometrics 64, 209–233 (2005)

    Article  Google Scholar 

  195. J.W. Fedderke, The objectivity of national research foundation peer review in South Africa assessed against bibliometric indexes. Scientometrics 97, 177–206 (2013)

    Article  Google Scholar 

  196. L. Rokach, M. Kalech, I. Blank, R. Stern, Who is going to win the next Association for the Advancement of Artificial Intelligence fellowship award? Evaluating researchers by mining bibliographic data. J. Am. Soc. Inf. Sci. Technol. 62, 2456–2470 (2011)

    Article  Google Scholar 

  197. P. Jensen, J.-B. Rouquier, Y. Croissant, Testing bibliometric indicators by their prediction of scientists promotions. Scientometrics 78, 467–47 (2009)

    Article  Google Scholar 

  198. P. Vakkari, Internet use increases the odds of using the public library. J. Doc. 68, 618–638 (2012)

    Article  Google Scholar 

  199. T.C.E. Engels, P. Goos, N. Dexters, E.H.J. Spruyt, Group size, \(h\)-index and efficiency in publishing in top journals explain expert panel assessments of research group quality and productivity. Res. Eval. 22, 224–236 (2013)

    Article  Google Scholar 

  200. S.-C.J. Sin, International coauthorship and citation impact: a bibliometric study of six LIS journals, 1980–2008. J. Am. Soc. Inf. Sci. Technol. 62, 1770–1783 (2011)

    Article  Google Scholar 

  201. A. Abbasi, J. Altmann, L. Hossain, Identifying the effects of co-authorship networks on the performance of scholars: a correlation and regression analysis of performance measures and social network analysis measures. J. Inf. 5, 594–607 (2011)

    Article  Google Scholar 

  202. G.D. Walters, Predicting subsequent citations to articles published in twelve crimepsychology journals: author impact versus journal impact. Scientometrics 69, 499–510 (2006)

    Article  Google Scholar 

  203. L. Bornmann, H.D. Daniel, Selecting scientific excellence through committee peer review—a citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants. Scientometrics 68, 427–440 (2006)

    Article  Google Scholar 

  204. F. Barjak, S. Robinson, International collaboration, mobility, and team diversity in the life sciences: impact on research performance. Soc. Geogr. 3, 23–36 (2008)

    Article  Google Scholar 

  205. S. Shan, On the generalized Zipf distribution. Part I. Inf. Process. Manag. 41, 1369–1386 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay K. Vitanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vitanov, N.K. (2016). Selected Models for Dynamics of Research Organizations and Research Production. In: Science Dynamics and Research Production. Qualitative and Quantitative Analysis of Scientific and Scholarly Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-41631-1_5

Download citation

Publish with us

Policies and ethics