Commonly Used Indexes for Assessment of Research Production

  • Nikolay K. Vitanov
Part of the Qualitative and Quantitative Analysis of Scientific and Scholarly Communication book series (QQASSC)


In this chapter, selected indicators and indexes (constructed on the basis of research publications and/or on the basis of a set of citations of these publications) are discussed. These indexes are frequently used for assessment of production of individual researchers. The chapter begins with several general remarks about indicators and indexes used in scientometrics. Then the famous h-index of Hirsch, its variants, and indexes complementary to the h-index are discussed. Next the g-index of Egghe as well as the \(i_n\)-indexes are described. The h-index, g-index, and \(i_n\)-indexes may provide a minimum of information for the quantitative part of assessment of the production of a researcher. Numerous indexes are described further in the text such as the m-index, p-index, \(IQ_p\)-index, A-index, R-index. The discussion of indexes continues with a discussion of indexes for the success of a researcher. In addition, a short list of indexes for quantitative characterization of research networks and their dynamics is presented.


Research Production Scientific Production Individual Researcher Jaccard Index Complex Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Vinkler, The Evaluation of Research by Scientometric Indicators (Chandos, Oxford, 2010)CrossRefGoogle Scholar
  2. 2.
    J. King, A review of bibliometric and other science indicators and their role in research evaluation. J. Inf. Sci. 13, 261–276 (1987)CrossRefGoogle Scholar
  3. 3.
    R. Todorov, W. Glänzel, Journal citation measures: a concise review. J. Inf. Sci. 14, 47–56 (1988)CrossRefGoogle Scholar
  4. 4.
    H.F. Moed, Bibliometric indicators reflect publication and management strategies. Scientometrics 47, 323–346 (2000)CrossRefGoogle Scholar
  5. 5.
    P. Vinkler, An attempt for defining some basic categories of scientometrics and classifying the indicators of evaluative scientometrics. Scientometrics 50, 539–544 (2001)CrossRefGoogle Scholar
  6. 6.
    P. Vinkler, An attempt of surveying and classifying bibliometric indicators for scientometric purposes. Scientometrics 13, 239–259 (1988)CrossRefGoogle Scholar
  7. 7.
    L.M. Raisig, Mathematical evaluation of the scientific serial. Science 131, 1417–1419 (1960)CrossRefGoogle Scholar
  8. 8.
    E. Garfield, Citation Indexing—its Theory and Application in Science, Technology, and Humanities (Wiley, New York, 1979)Google Scholar
  9. 9.
    E. Garfield, Citation analysis as a tool in journal evaluation. Science 178, 471–479 (1972)CrossRefGoogle Scholar
  10. 10.
    E. Garfield, Journal impact factor: a brief review. Can. Med. Assoc. J. 161, 979–980 (1999)Google Scholar
  11. 11.
    M. Zitt, H. Small, Modifying the journal impact factor by fractional citation weighting: the audience factor. J. Am. Soc. Inf. Sci. Technol. 59, 1856–1860 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Zitt, Citing-side normalization of journal impact: a robust variant of the audience factor. J. informetr. 4, 392–406 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Chew, E.V. Villanueva, M.B. van der Weyden, Life and times of the impact factor: retrospective analysis of trends for seven medical journals (1994–2005) and their Editors’ views. J. R. Soc. Med. 100, 142–150 (2007)Google Scholar
  14. 14.
    E. Garfield, The impact factor and using it correctly. Unfallchirurg 101, 413–414 (1998)Google Scholar
  15. 15.
    E. Garfield, The history and meaning of the journal impact factor. J. Am. Med. Assoc. 295, 90–93 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Zitt, The journal impact factor: Angel, devil, or scapegoat? A comment on J. K. Vanclay’s article 2011. Scientometrics 92, 485–503 (2012)CrossRefGoogle Scholar
  17. 17.
    S.J. Bensman, Garfield and the impact factor. Annu. Rev. Inf. Sci. Technol. 41, 93–155 (2007)CrossRefGoogle Scholar
  18. 18.
    I. Marshakova-Shaikevich, The standard impact factor as an evaluation tool of science fields and scientific journals. Scientometrics 35, 283–290 (1996)CrossRefGoogle Scholar
  19. 19.
    R. Rousseau, Median and percentile impact factors: a set of new indicators. Scientometrics 63, 431–441 (2005)CrossRefGoogle Scholar
  20. 20.
    N. De Bellis, Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics (Scarecrow Press, Lanham, MD, 2009)Google Scholar
  21. 21.
    G. Abramo, C.A. D’Angelo, F. Di Costa, Citations versus journal impact factor as proxy of quality: could the latter ever be preferable? Scientometrics 84, 821–833 (2010)CrossRefGoogle Scholar
  22. 22.
    J.M. Campanario, Empirical study of journal impact factors obtained using the classical two-year citation window versus a five-year citation window. Scientometrics 87, 189–204 (2011)Google Scholar
  23. 23.
    G. Buela-Casal, I. Zych, What do the scientists think about the impact factor? Scientometrics 92, 281–292 (2012)Google Scholar
  24. 24.
    P. Ingwersen, The calculation of Web impact factors. J. Doc. 54, 236–243 (1998)CrossRefGoogle Scholar
  25. 25.
    P. Ingwersen, The pragmatics of a diachronic journal impact factor. Scientometrics 92, 319–324 (2012)Google Scholar
  26. 26.
    M.R. Elkins, C.G. Maher, R.D. Herbert, A.M. Moseley, C. Sherrington, Correlation between the journal impact factor and three other journal citation indices. Scientometrics 85, 81–93 (2010)CrossRefGoogle Scholar
  27. 27.
    M.C. Calver, J.S. Bradley, Should we use the mean citations per paper to summarise a journal’s impact or to rank journals in the same field? Scientometrics 81, 611–615 (2009)Google Scholar
  28. 28.
    L. Leydesdorff, T. Opthof, Scopus’s source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations. J. Am. Soc. Inf. Sci. Technol. 61, 2365–2369 (2010)Google Scholar
  29. 29.
    M. Amin, M. Mabe, Impact factors: use and abuse. Perspect. Publ. 1, 1–6 (2000)Google Scholar
  30. 30.
    H.F. Moed, Citation Analysis in Research Evaluation (Springer, Berlin, 2005)Google Scholar
  31. 31.
    B.K. Sen, Normalized impact factor. J. Doc. 48, 318–329 (1992)CrossRefGoogle Scholar
  32. 32.
    H.F. Moed, T.N. van Leeuwen, Improving the accuracy of Institute for Scientific Information’s journal impact factors. J. Am. Soc. for Inf. Sci. 46, 461–467 (1995)CrossRefGoogle Scholar
  33. 33.
    H.F. Moed, T.N. van Leeuwen, J. Reedijk, Towards appropriate indicators of journal impact. Scientometrics 46, 575–589 (1999)CrossRefGoogle Scholar
  34. 34.
    B.K. Sen, K. Shailendra, Evaluation of recent scientific research output by a bibliometric method. Scientometrics 23, 31–46 (1992)CrossRefGoogle Scholar
  35. 35.
    A.M. Ramirez, E.O. Garcia, J.A. Del Rio, Renormalized impact factor. Scientometrics 47, 3–9 (2000)CrossRefGoogle Scholar
  36. 36.
    P.O. Seglen, Why the impact factor of journals should not be used for evaluating research. Br. Med. J. 314, 498–502 (1997)CrossRefGoogle Scholar
  37. 37.
    N. Sombatsompop, T. Markpin, W. Yochai, M. Saechiew, An evaluation of research performance for different subject categories using Impact Factor Point Average (IFPA) index: Thailand case study. Scientometrics 65, 293–305 (2005)CrossRefGoogle Scholar
  38. 38.
    R. Mansilla, E. Köppen, G. Cocho, P. Miramontes, On the behavior of journal impact factor rank-order distribution. J. informetr. 1, 155–160 (2007)CrossRefGoogle Scholar
  39. 39.
    P. Vinkler, Ratio of short term and long term impact factors and similarities of chemistry journals represented by references. Scientometrics 46, 621–633 (1999)CrossRefGoogle Scholar
  40. 40.
    W. Glänzel, H.F. Moed, Journal impact measures in bibliometric research. Scientometrics 53, 171–193 (2002)CrossRefGoogle Scholar
  41. 41.
    Value for money. Editorial. Nat. Mater. 8, 535 (2009)Google Scholar
  42. 42.
    S.J. Dubner, S.D. Levitt, Monkey Business (The New York Times Magazine, 6 May 2005)Google Scholar
  43. 43.
    E. Geisler, The Metrics of Science and Technology (Quorum Books, Westport, CT, 2000)Google Scholar
  44. 44.
    B.R. Martin, J. Irvine, Assessing basic research. Some partial indicators of scientific progress in radio astronomy. Res. Policy 12, 61–90 (1983)Google Scholar
  45. 45.
    B.R. Martin, The use of multiple indicators in the assessment of basic research. Scientometrics 36, 343–362 (1996)CrossRefGoogle Scholar
  46. 46.
    L. Bornmann, Scientific peer review. Annu. Rev. Inf. Sci. Technol. 45, 197–245 (2011)CrossRefGoogle Scholar
  47. 47.
    H.-D. Daniel, Guardians of Science: Fairness and Reliability of Peer Review. (VCH, Weinheim, 1993)Google Scholar
  48. 48.
    E. Rinia, T. van Leeuwen, H. van Vuren, A.F. van Raan, Comparative analysis of a set of bibliometric indicators and central peer review criteria. Res. Policy 27, 95–107 (1998)Google Scholar
  49. 49.
    J.M. Campanario, Peer review for journals as it stands today—Part 1. Sci. Commun. 19, 181–211 (1998)CrossRefGoogle Scholar
  50. 50.
    J.M. Campanario, Peer review for journals as it stands today—Part 2. Sci. Commun. 19, 277–306 (1998)CrossRefGoogle Scholar
  51. 51.
    M. Reinhart, Peer review of grant applications in biology and medicine. Reliability, fairness, and validity. Scientometrics 81, 789–809 (2009)CrossRefGoogle Scholar
  52. 52.
    A. Ragone, K. Mirylenka, F. Casati, M. Marchese, On peer review in computer science. Scientometrics 97, 317–356 (2013)CrossRefGoogle Scholar
  53. 53.
    S. Cole, L. Rubin, J.R. Cole, Peer Review in the National Science Foundation. Phase One of a Study (National Academy Press, Washington D.C., 1978)Google Scholar
  54. 54.
    J.R. Cole, S. Cole, Peer review in the National Science Foundation. Phase Two of a Study (National Academy Press, Washington D.C., 1981)Google Scholar
  55. 55.
    F. Godlee, T. Jefferson, Peer Review in Health Sciences (BMJ Books, London, 1999)Google Scholar
  56. 56.
    L. Butler, I. McAllister, Metrics or peer review? Evaluating the 2001 UK research assessment exercise in political science. Polit. Stud. Rev. 7, 3–17 (2009)CrossRefGoogle Scholar
  57. 57.
    T. Luukkonen, Conservatism and risk-taking in peer review: emerging ERC practices. Res. Eval. 21, 48–60 (2012)CrossRefGoogle Scholar
  58. 58.
    W.G.G. Benda, T.C.E. Engels, The predictive validity of peer review: a selective review of the judgmental forecasting qualities of peers, and implications for innovation in science. Int. J. Forecast. 27, 166–182 (2010)CrossRefGoogle Scholar
  59. 59.
    L. Bornmann, H.-D. Daniel, Selection of Research fellowship recipients by committee peer review. Reliability, fairness and predictive validity of Board of Trustees’ decisions. Scientometrics 63, 297–320 (2005)CrossRefGoogle Scholar
  60. 60.
    S. McKay, Social policy excellence—peer review or metrics? Analyzing the 2008 research assessment exercise in social work and social policy and administration. Soc. Policy Adm. 46, 526–543 (2012)Google Scholar
  61. 61.
    L. Allen, C. Jones, K. Dolby, D. Lynn, M. Walport, Looking for landmarks: the role of expert review and bibliometric analysis in evaluating scientific publication outputs. PLoS One 4(6), e5910 (2009)CrossRefGoogle Scholar
  62. 62.
    L. Bornmann, H.-D. Daniel, Selecting scientific excellence through committee peer review—A citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants. Scientometrics 68, 427–440 (2006)CrossRefGoogle Scholar
  63. 63.
    L. Bornmann, H.-D. Daniel, Selecting manuscripts for a high-impact journal through peer review: a citation analysis of communications that were accepted by Angewandte Chemie International Edition, or rejected but published elsewhere. J. Am. Soc. Inf. Sci. Technol. 59, 1841–1852 (2008)CrossRefGoogle Scholar
  64. 64.
    L. Bornmann, G. Wallon, A. Ledin, Does the committee peer review select the best applicants for funding? An investigation of the selection process for two European molecular biology organization programmes. PloS One 3, e3480 (2008)CrossRefGoogle Scholar
  65. 65.
    V. Bence, C. Oppenheim, The influence of peer review on the research assessment exercise. J. Inf. Sci. 30, 36–347 (2004)Google Scholar
  66. 66.
    L. Bornmann, H.-D. Daniel, Reliability, fairness and predictive validity of committee peer review. B.I.F. Futura 19, 7–19 (2004)Google Scholar
  67. 67.
    A. Schubert, T. Braun, Relative indicators and relational charts for comparative assessment of publication output and citation impact. Scientometrics 9, 281–291 (1986)CrossRefGoogle Scholar
  68. 68.
    R. Plomp, The highly cited papers of professors as an indicator of a research group’s scientific performance. Scientometrics 29, 377–393 (1994)CrossRefGoogle Scholar
  69. 69.
    Y. Elkana, J. Lederberg, R.K. Merton, A. Thackray, H. Zuckerman. Toward a Metric of Science: the Advent of Science Indicators (Wiley, New York, 1978)Google Scholar
  70. 70.
    C. Freeman, L. Soete, Developing science, technology and innovation indicators: what can we learn from the past. Res. Policy 38, 583–589 (2009)CrossRefGoogle Scholar
  71. 71.
    G.N. Gilbert, Measuring the growth of science: a review of indicators of scientific growth. Scientometrics 1, 9–34 (1978)CrossRefGoogle Scholar
  72. 72.
    T. Braun, W. Glänzel, A. Schubert, Scientometrics Indicators. A 32 Country Comparison of Publication Productivity and Citation Impact (World Scientific, London, 1985)Google Scholar
  73. 73.
    A.F.J. van Raan, Measuring science, in Handbook of Quantitative Science and Technology Research, eds. by H.F. Moed, W. Glänzel, U. Schmoch (Kluwer, Dordrecht, 2004), pp. 19–50Google Scholar
  74. 74.
    E. Babie, The Practice of Social Research, 13th edn. (Wadsworth, Australia, 2012)Google Scholar
  75. 75.
    W. Glänzel, B. Thijs, The influence of author self-citations on bibliometric macroindicators. Scientometrics 59, 281–310 (2004)Google Scholar
  76. 76.
    S. Hinze, W. Glänzel. Scientometric indicators in use: An overview. Presentation at European summer school of scientometrics, Berlin (2013).
  77. 77.
    B. Thijs, W. Glänzel, The influence of author self-citations on bibliometric meso-indicators. The case of European universities. Scientometrics 66, 71–80 (2006)CrossRefGoogle Scholar
  78. 78.
    M.H. MacRoberts, B.R. MacRoberts, Problems of citation analysis: a critical review. J. Am. Soc. Inf. Sci. 40, 342–349 (1989)CrossRefGoogle Scholar
  79. 79.
    M.H. MacRoberts, B.R. MacRoberts, Problems of citation analysis. Scientometrics 36, 435–444 (1996)CrossRefGoogle Scholar
  80. 80.
    L.I. Meho, C.R. Sugimoto, Assessing the scholarly impact of information studies: a tale of two citation databases—Scopus and Web of Science. J. Am. Soc. Inf. Sci. Technol. 60, 2499–2508 (2009)CrossRefGoogle Scholar
  81. 81.
    R.N. Kostoff, Citation analysis of research performer quality. Scientometrics 53, 49–71 (2002)CrossRefGoogle Scholar
  82. 82.
    R.N. Kostoff, W.L. Martinez, Is citation normalization realistic? J. Inf. Sci. 31, 57–61 (2005)CrossRefGoogle Scholar
  83. 83.
    M.H. Medoff, The efficiency of self-citations in economics. Scientometrics 69, 69–84 (2006)CrossRefGoogle Scholar
  84. 84.
    K. Kousha, M. Thelwall, An automatic method for extracting citations from Google Books. J. Assoc. Inf. Sci. Technol. 66, 309–320 (2015)CrossRefGoogle Scholar
  85. 85.
    N.L. Geller, J.S. de Cani, R.E. Davies, Lifetime-citation rates to compare scientists’ work. Soc. Sci. Res. 7, 256–345 (1978)CrossRefGoogle Scholar
  86. 86.
    N.L. Geller, J.S. de Cani, R.E. Davies, Lifetime-citation rates: a mathematical model to compare scientists’ work. J. Am. Soc. Inf. Sci. 32, 3–15 (1081)Google Scholar
  87. 87.
    C.S. Lin, M.H. Huang, D.Z. Chen, The influences of counting methods on university rankings based on paper count and citation count. J. Informetr. 7, 611–621 (2013)CrossRefGoogle Scholar
  88. 88.
    G. Abramo, C.A. D’Angelo, F. Rosati, The importance of accounting for the number of co-authors and their order when assessing research performance at the individual level in the life sciences. J. Informetr. 7, 198–208 (2013)CrossRefGoogle Scholar
  89. 89.
    L.M.A. Bettencourt, D.I. Kaiser, J. Kaur, Scientific discovery and topological transitions in collaboration networks. J. Informetr. 3, 210–221 (2009)CrossRefGoogle Scholar
  90. 90.
    D.W. Aksnes, A. Rip, Researchers’ perceptions of citations. Res. Policy 38, 895–905 (2009)CrossRefGoogle Scholar
  91. 91.
    S. Lehman, A.D. Jackson, B.E. Lautrup, A quantitative analysis of indicators of scientific performance. Scientometrics 76, 369–390 (2008)CrossRefGoogle Scholar
  92. 92.
    W. Glänzel, K. Debackere, B. Thijs, A. Schubert, A concise review on the role of author self-citations in information science, bibliometrics and science policy. Scientometrics 67, 263–277 (2006)CrossRefGoogle Scholar
  93. 93.
    A.J. Chapman, Assessing research: citation-count shortcomings. Psychol.: Bull. Br. Psychol. Soc. 8, 339–341 (1989)Google Scholar
  94. 94.
    P. Wouters, The citation culture. Academisch proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam (1999)Google Scholar
  95. 95.
    W. Glänzel, U. Schoepflin, A bibliometric study of reference literature in the sciences and social sciences. Inf. Process. Manag. 35, 31–44 (1999)CrossRefGoogle Scholar
  96. 96.
    N. Weinstock, Citation indexes, in Encyclopedia of Library and Information Science ed. by A. Kent, vol. 5 (Marcel Dekker, New York, 1971), pp. 16–41Google Scholar
  97. 97.
    E. Garfield, I.H. Sher, New factors in the evaluation of scientific literature through citation indexing. Am. Doc. 14, 195–201 (1963)CrossRefGoogle Scholar
  98. 98.
    M.H. MacRoberts, B.R. MacRoberts, Problems of citation analysis: a critical review. J. Am. Soc. Inf. Sci. 40, 342–349 (1989)CrossRefGoogle Scholar
  99. 99.
    S.M. Lawani, On the heterogeneity and classification of author self-citations. J. Am. Soc. Inf. Sci. 33, 281–284 (1982)CrossRefGoogle Scholar
  100. 100.
    W. Glänzel, B. Thijs, B. Schlemmer, A bibliometric approach to the role of author self-citations in scientific communication. Scientometrics 59, 63–77 (2004)Google Scholar
  101. 101.
    S. Alonso, F.J. Cabrerizo, E. Herrera-Viedma, F. Herrera, \(h\)-index: a review focused in its variants, computation and standardization for different scientific fields. J. Informetr. 3, 273–289 (2009)CrossRefGoogle Scholar
  102. 102.
    P. Jasco, The pros and cons of computing \(h\)-index using Google Scholar. Online Inf. Rev. 32, 437–452 (2008)CrossRefGoogle Scholar
  103. 103.
    P. Jacso, The pros and cons of computing the h-index using Scopus. Online Inf. Rev. 32, 524–535 (2008)Google Scholar
  104. 104.
    P. Jacso, Testing the calculation of a realistic h-index in Google Scholar, Scopus, and Web of Science for F. W. Lancaster. Libr. Trends 56, 784–815 (2008)Google Scholar
  105. 105.
    S. Redner, On the meaning of the \(h\)-index. J. Stat. Mech.: Theory Exp. L03005 (2010)Google Scholar
  106. 106.
    E. Csajbok, A. Berhidi, L. Vasas, A. Schubert, Hirsch-index for countries based on Essential Science Indicators data. Scientometrics 73, 91–117 (2007)CrossRefGoogle Scholar
  107. 107.
    L. Bornmann, H.-D. Daniel, What do we know about \(h\)-index. J. Am. Soc. Inf. Sci. Technol. 58, 1381–1385 (2007)CrossRefGoogle Scholar
  108. 108.
    W. Glänzel, On the \(h\)-index—A mathematical approach to a new measure of publication activity and citation. Scientometrics 67, 315–321 (2006)CrossRefGoogle Scholar
  109. 109.
    L. Egghe, The influence of transformations on the \(h\)-index and the \(g\)-index. J. Am. Soc. Inf. Sci. Technol. 59, 1304–1312 (2008)CrossRefGoogle Scholar
  110. 110.
    W. Glänzel. On the opportunities and limitations of the \(h\)-index. Sci. Focus 1, 10–11 (2006)Google Scholar
  111. 111.
    L. Bornmann, The state of \(h\)-index research. EMBO Rep. 10, 2–6 (2009)CrossRefGoogle Scholar
  112. 112.
    B. Cronin, L. Melo, Using the \(h\)—index to rank influential information scientists. J. Am. Soc. Inf. Sci. Technol. 57, 1275–1278 (2006)CrossRefGoogle Scholar
  113. 113.
    A. Schubert, Using the \(h\)-index for assessing single publications. Scientometrics 78, 559–565 (2008)CrossRefGoogle Scholar
  114. 114.
    W. Glänzel, \(h\)-index for price medalists. ISSI Newsl. 4, 15–18 (2005)Google Scholar
  115. 115.
    R. Rousseau, Reflections on recent developments of the \(h\)-index and \(h\)-type of indices. COLLNET J. Sci. Inf. Manage. 2, 1–8 (2008)Google Scholar
  116. 116.
    L. Egghe, I.K. Ravichandra Rao, Study of different \(h\)-indexes for groups of authors. J. Am. Soci. Inf. Sci. Technol. 59, 1276–1281 (2008)CrossRefGoogle Scholar
  117. 117.
    R. Rousseau, A case study: evolution of JASIS’ Hirsch index. Sci. Focus 1, 16–17 (2006)Google Scholar
  118. 118.
    L. Bornmann, R. Mutz, H.-D. Daniel, The \(h\)-index research output measurement: two approaches to enhance its accuracy. J. Informetr. 4, 407–414 (2010)CrossRefGoogle Scholar
  119. 119.
    L. Egghe, R. Rousseau, An infometric model for the Hirsch-index. Scientometrics 69, 121–129 (2006)CrossRefGoogle Scholar
  120. 120.
    R. Rousseau, The influence of missing publications on the Hirsch index. J. Informetr. 1, 2–7 (2007)CrossRefGoogle Scholar
  121. 121.
    M. Norris, C. Oppenheim, Peer review and the h-index: two studies. J. Informetr. 4, 221–232 (2010)CrossRefGoogle Scholar
  122. 122.
    M. Norris, C. Oppenheim, The h-index: a broad review of a new bibliometric indicator. J. Doc. 66, 681–705 (2010)CrossRefGoogle Scholar
  123. 123.
    L. Egghe, Dynamic \(h\)-index: the Hirsch index in function of time. J. Am. Soc. Inf. Sci. Technol. 58, 452–454 (2007)CrossRefGoogle Scholar
  124. 124.
    M. Henzinger, J. Sunol, I. Weber, The stability of the h-index. Scientometrics 84, 465–479 (2009)CrossRefGoogle Scholar
  125. 125.
    R. Burrows, Living with the h-index? Metric assemblages in the contemporary academy. Sociol. Rev. 60, 355–372 (2012)Google Scholar
  126. 126.
    X. Hu, R. Rousseau, J. Chen, In those fields where multiple authorship is the rule, the h-index should be supplemented by role-based h-indices. J. Inf. Sci. 36, 73–85 (2010)Google Scholar
  127. 127.
    L. Egghe, R. Rousseau, A \(h\)-index weighted by citation impact. Inf. Process. Manag. 44, 770–780 (2008)CrossRefGoogle Scholar
  128. 128.
    L. Egghe, Modelling successive \(h\)-indexes. Scientometrics 77, 377–387 (2008)CrossRefGoogle Scholar
  129. 129.
    J.E. Iglesias, C. Pecharroman, Scaling the h-index for different scientific ISI fields. Scientometrics 73, 303–320 (2007)CrossRefGoogle Scholar
  130. 130.
    R. Guns, R. Rousseau, Real and rational variants of the \(h\)-index and \(g\)-index. J. Informetr. 3, 64–71 (2009)CrossRefGoogle Scholar
  131. 131.
    L. Egghe, L. Liang, R. Rousseau, A relation between \(h\)-index and impact factor in the power-law model. J. Am. Soc. Inf. Sci. Technol. 60, 2362–2365 (2009)CrossRefGoogle Scholar
  132. 132.
    J. Bar-Ilan, Which \(h\)-index? A comparison of WoS Scopus and Google Scholar. Scientometrics 74, 257–271 (2008)CrossRefGoogle Scholar
  133. 133.
    L. Egghe, Mathematical theory of the \(h\)- and \(g\)-index in case of fractional counting of authorship. J. Am. Soc. Inf. Sci. Technol. 59, 1608–1616 (2008)CrossRefGoogle Scholar
  134. 134.
    J.E. Hirsch, An index to quantify an individual’s scientific research output. PNAS 102, 16569–16572 (2005)CrossRefGoogle Scholar
  135. 135.
    B. Cronin, L.I. Meho, Using the \(h\)-index to rank influential information scientists. J. Am. Soc. Inf. Sci. Technol. 57, 1275–1278 (2006)CrossRefGoogle Scholar
  136. 136.
    T. Braun, W. Glänzel, A. Schubert, A Hirsch-type index for journals. Scientist 19, 8 (2005)Google Scholar
  137. 137.
    A.W. Harzing, R. van der Wal, A Google Scholar h-index for journals: an alternative metric to measure journal impact in economics and business. J. Am. Soc. Inf. Sci. Technol. 60, 41–46 (2009)CrossRefGoogle Scholar
  138. 138.
    M.G. Banks, An extension of the Hirsch index: indexing scientific topics and compounds. Scientometrics 69, 161–168 (2006)CrossRefGoogle Scholar
  139. 139.
    A. Schubert, W. Glänzel, A systematic analysis of Hirsch-type indices for journals. J. Informetr. 1, 179–184 (2007)CrossRefGoogle Scholar
  140. 140.
    A.W.F. Edwards, System to rank scientists was pedaled by Jeffreys. Nature 437(7061), 951 (2005)CrossRefGoogle Scholar
  141. 141.
    F.Y. Ye, An investigation of mathematical models of the \(h\)-index. Scientometrics 81, 493–498 (2009)CrossRefGoogle Scholar
  142. 142.
    L. Bornmann, R. Mutz, S.E. Hug, H.-D. Daniel, A multilevel meta-analysis of studies reporting correlations between the \(h\) index and 37 different \(h\)-index variants. J. Informetr. 5, 346–359 (2011)Google Scholar
  143. 143.
    N.J. van Eck, J. Waltman, Generalizing the h- and g-indices. J. Informetr. 2(4), 263–271 (2008)CrossRefGoogle Scholar
  144. 144.
    L. Engqvist, J.G. Frommen, New insights into the relationship between the h-index and self-citations? J. Am. Soc. Inf. Sci. Technol. 61, 1514–1516 (2010)CrossRefGoogle Scholar
  145. 145.
    J.H. Fowler, D.W. Aksnes, Does self-citation pay? Scientometrics 72, 427–437 (2007)CrossRefGoogle Scholar
  146. 146.
    M.H. Huang, W.Y.C. Lin, Probing the effect of author self-citations on h-index: a case study of environmental engineering. J. Inf. Sci. 37, 453–461 (2011)CrossRefGoogle Scholar
  147. 147.
    E. Gianoli, M.A. Molina-Montenegro, Insights into the relationship between the h-index and self-citations. J. Am. Soc. Inf. Sci. Technol. 60, 1283–1285 (2009)CrossRefGoogle Scholar
  148. 148.
    R. Costas, T.N. van Leeuwen, M. Bordons, Self-citations at the meso and individual levels: effects of different calculation methods. Scientometrics 82, 517–537 (2010)CrossRefGoogle Scholar
  149. 149.
    K.R. Dienes, Completing \(h\). J. Informetr. 9, 385–397 (2015)CrossRefGoogle Scholar
  150. 150.
    R. Rousseau, C. Garcia-Zorita, E. Sanz-Casado, The \(h\)-bubble. J. Informetr. 7, 294–300 (2013)CrossRefGoogle Scholar
  151. 151.
    L. Zhang, B. Thijs, W. Glänzel, The diffusion of h-related literature. J. Informetr. 5, 583–593 (2011)Google Scholar
  152. 152.
    P.D. Batista, M.G. Campiteli, O. Kinouchi, A.S. Martinez, Is it possible to compare researchers with different scientific interests? Scientometrics 68, 179–189 (2006)CrossRefGoogle Scholar
  153. 153.
    V. Sypsa, A. Hatzakis, Assessing the impact of biomedical research in academic institutions of disparate sizes. BMC Med. Res. Methodol. 9, Article No. 33. doi: 10.1186/1471-2288-9-33
  154. 154.
    T.R. Anderson, R.K.S. Hankin, P.D. Killworth, Beyond the Durfee square: enhancing the \(h\)-index to score total population output. Scientometrics 76, 577–588 (2008)CrossRefGoogle Scholar
  155. 155.
    N.T. Hagen, Harmonic allocation of authorship credit: source-level correction of bibliometric bias assures accurate publication and citation analysis. PLOS One 3, e4021 (2008)CrossRefGoogle Scholar
  156. 156.
    N.T. Hagen, Harmonic publication and citation counting: sharing authorship credit equitably—not equally, geometrically or arithmetically. Scientometrics 84, 785–793 (2010)CrossRefGoogle Scholar
  157. 157.
    X.Z. Liu, H. Fang, Fairly sharing the credit of multi-authored papers and its application in the modification of h-index and g-index. Scientometrics 91, 37–49 (2012)CrossRefGoogle Scholar
  158. 158.
    X.Z. Liu, H. Fang, Modifying h-index by allocating credit of multi-authored papers whose author names rank based on contribution. J. Informetr. 6, 557–565 (2012)CrossRefGoogle Scholar
  159. 159.
    D.B. de Beaver, Reflections on scientific collaboration (and its study): past, present, and future. Scientometrics 52(2001), 365–377 (2001)Google Scholar
  160. 160.
    M. Schreiber, A modification of the \(h\)-index: the \(h_m\)-index accounts for multi-authored manuscripts. J. Informetr. 2, 211–216 (2008)CrossRefGoogle Scholar
  161. 161.
    J.E. Hirsch, An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship. Scientometrics 85, 741–754 (2010)CrossRefGoogle Scholar
  162. 162.
    S. Galam, Tailor based allocations for multiple authorship: a fractional \(gh\)-index. Scientometrics 89, 365–379 (2011)CrossRefGoogle Scholar
  163. 163.
    D. de Solla Price, Multiple authorship. Science 212(4498), 986–986 (1981)CrossRefGoogle Scholar
  164. 164.
    G. van Hooydonk, Fractional counting of multiauthored publications: consequences for the impact of authors. J. Am. Soc. Inf. Sci. 48, 944–945 (1997)CrossRefGoogle Scholar
  165. 165.
    L. Egghe, R. Rousseau, G. van Hooydonk, Methods for acrediting publications to authors or countries: consequences for evaluation studies. J. Am. Soc. Inf. Sci. 51, 145–157 (2000)CrossRefGoogle Scholar
  166. 166.
    J. Stallings, E. Vance, J. Yang, M.W. Vanier, J. Liang, L. Pang, L. Dai, I. Ye, G. Wang, Determining scientific impact using a collaboration index. PNAS 110, 9680–9685 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    L. Bornmann, R. Mutz, H.-D. Daniel, Are there better indices for evaluation purposes than the \(h\)-index? A comparison of nine different variants of the \(h\)-index using data from biomedicine. J. Am. Soc. Inf. Sci. Technol. 59, 830–837 (2008)CrossRefGoogle Scholar
  168. 168.
    P. Dorta-Gonzales, M.-I. Dorta-Gonzales, Central indexes to the citation distribution: a complement to the \(h\)-index. Scientometrics 88, 729–745 (2011)CrossRefGoogle Scholar
  169. 169.
    W. Glänzel, A. Schubert, Hirsch-type characteristics of the tail of distributions. J. Informetr. 4, 118–123 (2010)Google Scholar
  170. 170.
    L. Egghe, Characteristic scores and scales based on \(h\)-type indices. J. Informetr. 4, 14–22 (2010)CrossRefGoogle Scholar
  171. 171.
    W. Glänzel, A. Schubert, Characteristic scores and scales in assessing citation impact. J. Inf. Sci. 14, 123–127 (1988)Google Scholar
  172. 172.
    L. Egghe, Characteristic scores and scales in a Lotkaian framework. Scientometrics 83, 455–462 (2010)CrossRefGoogle Scholar
  173. 173.
    A. Sidiropoulos, D. Katsaros, Y. Manolopoulos, Ranking and identifying influential scientists versus mass producers by the Perfectionism Index. Scientometrics 103, 1–31 (2015)CrossRefGoogle Scholar
  174. 174.
    F. Ye, L. Leydesdorff, The academic trace of the performance matrix: a mathematical synthesis of the \(h\)-index and the integrated impact indicator (I3). J. Assoc. Inf. Sci. Technol. 65, 742–750 (2014)CrossRefGoogle Scholar
  175. 175.
    S.V. Dorogovtsev, J.F.F. Mendes, Ranking scientists. Nat. Phys. 11, 882–883 (2010)CrossRefGoogle Scholar
  176. 176.
    M.A. Garzia-Perez, An extension of the \(h\)-index that covers the tail and the top of the citation curve and allows ranking researchers with similar \(h\). J. Informetr. 6, 689–699 (2012)CrossRefGoogle Scholar
  177. 177.
    M. Schreiber, Self-citations corrections to the Hirsch index. Europhys. Lett. 78, Art. No. 30002 (2007)Google Scholar
  178. 178.
    M. Schreiber, The influence of self-citation corrections on the Egghe’s g-index. Scientometrics 76, 187–200 (2008)CrossRefGoogle Scholar
  179. 179.
    M.A. Garcia-Perez, A multidimensional extension to Hirsch’s \(h\)-index. Scientometrics 81, 779–785 (2009)CrossRefGoogle Scholar
  180. 180.
    A. Schubert, Successive \(h\)-indices. Scientometrics 70, 201–205 (2007)CrossRefGoogle Scholar
  181. 181.
    A. Schubert, A Hirsch-type index of co-author partnership ability. Scientometrics 91, 303–308 (2011)CrossRefGoogle Scholar
  182. 182.
    F.J. Cabrerizo, S. Alonso, E. Herrera-Viedma, F. Herera, \(q^2\)-index: quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core. J. Informetr. 4, 23–28 (2010)CrossRefGoogle Scholar
  183. 183.
    S. Alonso, F.J. Cabrerizo, E. Herrera-Viedma, F. Herrera, \(hg\)-index: a new index to characterize the scientific output of researchers based on the \(h\)-and \(g\)-indices. Scientometrics 82, 391–400 (2009)CrossRefGoogle Scholar
  184. 184.
    S. Moussa, M. Touzani, Ranking marketing journals using the Google-based \(hg\)-index. J. Informetr. 4, 107–117 (2010)CrossRefGoogle Scholar
  185. 185.
    L. Egghe, An improvement of the \(h\)-index: the \(g\)-index. ISSI Newsl. 2, 8–9 (2006)Google Scholar
  186. 186.
    L. Egghe, Theory and practice of the g-index. Scientometrics 69, 131–152 (2006)CrossRefGoogle Scholar
  187. 187.
    L. Egghe, An econometric property of the \(g\)-index. Inf. Process. Manage. 45, 484–489 (2009)CrossRefGoogle Scholar
  188. 188.
    L. Egghe, The Hirsch-index and related impact measures. Annu. Rev. Inf. Sci. Technol. 44, 65–114 (2010)CrossRefGoogle Scholar
  189. 189.
    M. Schreiber, How to modify the g-index for multi-authored manuscripts. J. Informetr. 4, 42–54 (2010)CrossRefGoogle Scholar
  190. 190.
    M. Schreiber, A case study of the modified g-index: counting multi-author publications fractionally. J. Informetr. 4, 636–643 (2010)CrossRefGoogle Scholar
  191. 191.
    R. Costas, M. Bordons, Is \(g\)-index better than the \(h\)-index? An exploratory study at the individual level. Scientometrics 77, 267–288 (2008)CrossRefGoogle Scholar
  192. 192.
    G. Prathap, The 100 most prolific economists using the \(p\)-index. Scientometrics 84, 167–172 (2010)CrossRefGoogle Scholar
  193. 193.
    G. Prathap, The energy-exergy-entropy (or EEE) sequences in bibliometric assessment. Scientometrics 87, 515–524 (2011)CrossRefGoogle Scholar
  194. 194.
    J. Antonakis, R. Lalive, Quantifying scholarly impact: \(IQ_p\) versus the Hirsch index. J. Am. Soc. Inf. Sci. Technol. 59, 956–969 (2008)CrossRefGoogle Scholar
  195. 195.
    B.-H. Jin, L.-M. Liang, R. Rousseau, L. Egghe, The R- and AR-indices: complementing the h-index. Chin. Sci. Bull. 52(6), 855–863 (2007)CrossRefGoogle Scholar
  196. 196.
    R. Rousseau, F.Y. Ye, A proposal for a dynamic \(h\)-type index. J. Am. Soc. Inf. Sci. Technol. 59, 1853–1855 (2008)CrossRefGoogle Scholar
  197. 197.
    Q.L. Burrell, Hirsch index or Hirsch rate? Some thoughts arising from Liang’s data. Scientometrics 73, 19–28 (2007)CrossRefGoogle Scholar
  198. 198.
    L. Waltman, N.J. van Eck, T.N. van Leeuween, M.S. Visser, A.F.J. van Raan, Towards new crown indicator: an empirical analysis. Scientometrics 87, 467–481 (2011)CrossRefGoogle Scholar
  199. 199.
    R.E. de Bruin, A. Kint, M. Luwel, H.F. Moed, A study of research evaluation and planning. Res. Eval. 3, 25–41 (1993)CrossRefGoogle Scholar
  200. 200.
    T. Braun, W. Glänzel, United Germany: the new scientific superpower? Scientometrics 19, 513–521 (1990)Google Scholar
  201. 201.
    H.F. Moed, R.E. de Bruin, T.N. van Leeuween, New bibliometric tools for the assessment of national research performance: database description, overview of indicators and first applications. Scientometrics 33, 381–422 (1995)Google Scholar
  202. 202.
    P. Vinkler, Eminence of scientists in the light of the \(h\)-index and other scientometrics indicators. J. Inf. Sci. 33, 481–491 (2007)MathSciNetCrossRefGoogle Scholar
  203. 203.
    T.J. Phelan, A compendium of issues for citation analysis. Scientometrics 45, 117–136 (1999)CrossRefGoogle Scholar
  204. 204.
    T.J. Phelan, Is Australian educational research worthwhile? Aust. J. Educ. 44, 175–194 (2000)CrossRefGoogle Scholar
  205. 205.
    P. Vinkler, The \(\pi \)-index. A new indicator for assessing scientific impact. J. Inf. Sci. 35, 602–612 (2009)CrossRefGoogle Scholar
  206. 206.
    J. Wu, Investigating the universal distributions of normalized indicators and developing field-independing index. J. Informetr. 7, 63–71 (2013)CrossRefGoogle Scholar
  207. 207.
    F. Franceschini, M. Galetto, D. Maisano, L. Mastrogiacomo, The success-index: an alternative approach to the \(h\)-index for evaluating an individuals research output. Scientometrics 92, 621–641 (2012)CrossRefGoogle Scholar
  208. 208.
    F. Franceschini, M. Galetto, D. Maisano, L. Mastrogiacomo, Further clarifications about the success-index. J. Informetr. 6, 669–673 (2012)CrossRefGoogle Scholar
  209. 209.
    F. Francheschini, M. Galeto, M. Maisano, L. Mastrogiacomo, An infometric model for the success index. J. Informetr. 7, 109–116 (2013)CrossRefGoogle Scholar
  210. 210.
    L. Egghe, Impact coverage of the success index. J. Informetr. 8, 384–389 (2014)CrossRefGoogle Scholar
  211. 211.
    M. Kosmulski, Successful papers: a new idea in evaluation of scientific output. J. Informetr. 5, 481–485 (2011)CrossRefGoogle Scholar
  212. 212.
    P. Vinkler, Evaluation of some methods for the relative assessment of scientific publications. Scientometrics 10, 157–177 (1986)CrossRefGoogle Scholar
  213. 213.
    A.-L. Barabasi, Linked. How Everything is Connected to Everything Else and Ehat it Means for Business, Science, and Everyday Life (Basic Books, New York, 2014)Google Scholar
  214. 214.
    M. Newman, A.-L. Barabasi, D.J. Watts, The Structure and Dynamics of Networks (Princeton University Press, Princeton, NJ, 2006)zbMATHGoogle Scholar
  215. 215.
    A.-L. Barabasi, Z.N. Oltivai, Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)CrossRefGoogle Scholar
  216. 216.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltivai, A.-L. Barabasi, The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)CrossRefGoogle Scholar
  217. 217.
    R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)CrossRefGoogle Scholar
  218. 218.
    D. Smilkov, C.A. Hidalgo, L. Kocarev, Beyond network structure: how heterogeneous susceptibility modulates the spread of epidemicsGoogle Scholar
  219. 219.
    R. Pastor-Satorras, A. Vespignani, Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63, Art. No. 0661117 (2001)Google Scholar
  220. 220.
    L. Isella, J. Stehle, A. Barrat, C. Cattuto, J.-F. Pinton, W. van den Broeck, What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)CrossRefGoogle Scholar
  221. 221.
    A.-L. Barabasi, The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)CrossRefGoogle Scholar
  222. 222.
    S. Fortunato, M. Brathelemy, Resolution limit in community detection. PNAS 104, 36–41 (2007)CrossRefGoogle Scholar
  223. 223.
    G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  224. 224.
    A. Lancichinetti, S. Fortunato, Community detection algorithms: a comparative analysis. Phys. Rev. E 80, Art. No. 056117 (2009)Google Scholar
  225. 225.
    J.J. Ramasco, S.N. Dorogovtsev, R. Pastor-Satorras, Self-organization of collaboration networks. Phys. Rev. E 70, Art. No. 036106 (2004)Google Scholar
  226. 226.
    A. Scharnhorst, M. Thelwall, Cytation and hyperlink networks. Curr. Sci. 89, 1518–1523 (2005)Google Scholar
  227. 227.
    G. Ahuja, Collaboration networks, structural holes and innovation: a longitudinal study. Adm. Sci. Q. 45, 425–455 (2000)CrossRefGoogle Scholar
  228. 228.
    F. Havemann, A. Scharnhornst, bibliometrische netzwerke, in Handbuch Netzwerkforschung, eds. by C. Stegbauer, R. Häusling (Springer, Berlin, 2010), pp. 799–823Google Scholar
  229. 229.
    A. Pyka, A. Scharnhorst (eds.), Innovation networks. New Approaches in Modeling and Analyzing (Springer, Berlin, 2009)Google Scholar
  230. 230.
    A. Scharnhorst, Citation-networks, science landscapes and evolutionary strategies. Scientometrics 43, 95–106 (1998)CrossRefGoogle Scholar
  231. 231.
    J. Ortega, I. Aguillo, V. Cothey, A. Scharnhorst, Maps of the academic web in the European Higher Education Area—an exploration of visual web indicators. Scientometrics 74, 295–308 (2007)CrossRefGoogle Scholar
  232. 232.
    M.E.J. Newman, The structure of scientific collaboration networks. PNAS 98, 404–409 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  233. 233.
    B. Kozma, A. Barrat, Consensus formation on adaptive networks. Phys. Rev. E 77, Art. No. 016102 (2008)Google Scholar
  234. 234.
    S. Fortunato, V. Latora, A. Pluchino, A. Rapisarda, Vector opinion dynamics in a bounded confidence consensus model. Int. J. Mod. Phys. C 16, 1535–1551 (2005)zbMATHCrossRefGoogle Scholar
  235. 235.
    L. Dall’Asta, A. Baroncheli, A. Barrat, V. Loreto, Agreement dynamics on small-world networks. Europhys. Lett. 73, 969–975 (2006)MathSciNetCrossRefGoogle Scholar
  236. 236.
    M. Barthelemy, Spatial networks. Phys. Rep. 499, 1–101 (2011)MathSciNetCrossRefGoogle Scholar
  237. 237.
    R. Albert, A.-L. Barabasi, Topology of evolving networks: local events and Universality. Phys. Rev. Lett. 84, 5234–5237 (2000)CrossRefGoogle Scholar
  238. 238.
    R. Albert, I. Albert, G.L. Nakarado, Structural vulnerability of the North American power grid. Phys. Rev. E 69, Art. No. 025103 (2004)Google Scholar
  239. 239.
    R. Pastor-Satorras, A. Vespignani, Evolution and structure of the internet: a statistical physics approach. Evolution and Structure of the Internet (Cambridge University Press, Cambridge, 2004)Google Scholar
  240. 240.
    A. Reka, H. Jeong, A.-L. Barabasi, Diameter of the World Wide Web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  241. 241.
    A. Vazquez, R. Pastor-Satorras, A. Vespignani, Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, Art. No. 066130 (2002)Google Scholar
  242. 242.
    Y. Moreno, M. Nekovee, A.F. Pacheco, Dynamics of rumor spreading in complex networks. Phys. Rev. E 69, Art. No. 066130 (2004)Google Scholar
  243. 243.
    M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili, Theory of rumor spreading in complex social networks. Phys. A 374, 457–470 (2007)CrossRefGoogle Scholar
  244. 244.
    E. Otte, R. Rousseau, Social network analysis: a powerful strategy, also for the information sciences. J. Inf. Sci. 28, 441–453 (2002)CrossRefGoogle Scholar
  245. 245.
    Y.-H. Eom, S. Fortunato, Characterizing and modeling citation dynamics. PLOS One 6, e24926 (2011)CrossRefGoogle Scholar
  246. 246.
    F. Raddichi, S. Fortunato, B. Markines, A. Vespignani, Diffusion of scientific credits and the ranking of scientists. Phys. Rev. E 80, Art. No. 056103 (2009)Google Scholar
  247. 247.
    A. Schubert, A. Korn, A. Telcs, Hirsch-type indices for characterizing networks. Scientometrics 78, 375–382 (2009)CrossRefGoogle Scholar
  248. 248.
    F. Mali, L. Kronegger, P. Doreian, A. Ferligoj, Dynamics scientific co-authorship networks, in Models of Science Dynamics, eds. by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer, Berlin, 2012), pp. 195–232Google Scholar
  249. 249.
    F. Raddichi, S. Fortunato, A. Vespigniani, Citation networks, in Models of Science Dynamics, eds. by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer, Berlin, 2012), pp. 233–257Google Scholar
  250. 250.
    L. Egghe, R. Rousseau, Co-citation, bibliographic coupling and a characterization of lattice citation networks. Scientometrics 55, 349–361 (2002)CrossRefGoogle Scholar
  251. 251.
    Y. Ding, E.J. Yan, A. Frazho, J. Caverlee, PageRank for ranking authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol. 60, 2229–2243 (2009)CrossRefGoogle Scholar
  252. 252.
    P. Chen, S. Redner, Community structure of the physical review citation network. J. Informetr. 4, 278–290 (2010)CrossRefGoogle Scholar
  253. 253.
    S.X. Zhao, R. Roussseau, F.Y. Ye, \(h\)-degree as a basic measure in weighted networks. J. Informetr. 5, 668–677 (2011)CrossRefGoogle Scholar
  254. 254.
    A. Abbasi, L. Hossain, L. Leydesdorf, Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. J. Informetr. 6, 403–412 (2012)CrossRefGoogle Scholar
  255. 255.
    L.C. Freeman, Centrality in social networks. Conceptual clarification. Soc. Netw. 1, 215–239 (1978)CrossRefGoogle Scholar
  256. 256.
    X. Yan, L. Zhai, W. Fan, C-index: a weighted network mode centrality measure for collaboration competence. J. Informetr. 7, 223–239 (2013)Google Scholar
  257. 257.
    A. Korn, A. Schubert, A. Telcs, Lobby index in networks. Phys. A 388, 2221–2226 (2009)CrossRefGoogle Scholar
  258. 258.
    M.G. Campiteli, A.J. Holanda, L.D.H. Soares, P.R.C. Soles, O. Kinouchi, Lobby index as a network centrality measure. Phys. A 392, 5511–5515 (2013)CrossRefGoogle Scholar
  259. 259.
    M. Ausloos, A scientometric law about co-authors and their ranking: the co-author core. Scientometrics 95, 895–909 (2013)CrossRefGoogle Scholar
  260. 260.
    P. Jaccard, The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)CrossRefGoogle Scholar
  261. 261.
    M. Levandowsky, D. Winter, Distance between sets. Nature 234(5), 34–35 (1971)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of MechanicsSofiaBulgaria
  2. 2.Max-Planck Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations