Skip to main content

Radiologic Diagnosis

  • Chapter
  • First Online:
  • 1152 Accesses

Abstract

Radiologic imaging in professional and amateur athletes suffering from groin pain syndrome (GPS) is a difficult but stimulating diagnostic challenge. Athletes who participate mostly in soccer, ice hockey, and tennis frequently undergo acute and chronic injuries in the pelvic, inguinal, and hip regions. Sports with a high incidence of groin injury often involve kicking and twisting movements; groin injury is the fourth most common time-loss injury in professional soccer players.

Establishing a radiologic diagnosis of pathoanatomy of groin injuries is crucial for optimal athlete management, to assess the severity and the extent of damage, to guide treatment and rehabilitation, and to prevent chronic injuries. Athletes nowadays are usually examined with conventional pelvic radiographs (RX), ultrasound (US), and magnetic resonance imaging (MRI) in order to detect, in the acute or chronic clinical scenario, the several pathologic conditions such as intra-articular disorders, extra-articular disorders, or osseous abnormalities that can lead to long-standing groin pain syndrome (LSGPS). Radiologic diagnostic imaging in young athletes is usually performed with the intent to limit examinations using ionizing radiation, wherever possible; in selected cases and usually as second-level examinations, computed tomography (CT) or magnetic resonance arthrography (MRA) could be proposed to guide the therapeutic decision. Radiologists should be active members of interdisciplinary teams of healthcare professionals working together to finally make possible a prompt return to athletic activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Omar IM, Zoga AC, Kavanagh EC, Koulouris G, Bergin D, Gopez AG, et al. Athletic pubalgia and “sports hernia”: optimal MR imaging technique and findings. Radiographics. 2008;28(5):1415–38.

    Article  PubMed  Google Scholar 

  2. Thorborg K, Serner A, Petersen J, Madsen TM, Magnusson P, Holmich P. Hip adduction and abduction strength profiles in elite soccer players: implications for clinical evaluation of hip adductor muscle recovery after injury. Am J Sports Med. 2011;39(1):121–6.

    Article  PubMed  Google Scholar 

  3. Death AB, Kirby L, Mc ML. Pelvic ring mobility: assessment by stress radiograph. Arch Phys Med Rehabil. 1982;63:204–6.

    CAS  PubMed  Google Scholar 

  4. Agricola R, Waarsing JH, Thomas GE, Carr AJ, Reijman M, Bierma-Zeinstra SM, Glyn-Jones S, Weinans H, Arden NK. Response to letter to the editor: “Cam impingement: defining the presence of a cam deformity by the alpha angle data from the CHECK cohort and Chingford cohort”. Osteoarthritis Cartilage. 2014;22(12):2095–6.

    Article  CAS  PubMed  Google Scholar 

  5. Peetrons P. Ultrasound of muscles. Eur Radiol. 2002;12:35–43.

    Article  CAS  PubMed  Google Scholar 

  6. Dawes AR, Seidenberg PH. Sonography of sports injuries of the hip. Sports Health. 2014;6(6):531–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bedi A, Dolan M, Magennis E, Lipman J, Buly R, Kelly BT. Computer-assisted modeling of osseous impingement and resection in femoroacetabular impingement. Arthroscopy. 2012;28(2):204–10.

    Article  PubMed  Google Scholar 

  8. Naraghi A, White LM. MRI of labral and chondral lesions of the hip. Am J Roentgenol. 2015;205:479–90.

    Article  Google Scholar 

  9. Schmaranzer F, Klauser A, Kogler M, Henninger B, Forstner T, Reichkendler M, Schmaranzer E. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol. 2015;25(6):1721–30.

    Article  PubMed  Google Scholar 

  10. Engebretsen L, Soligard T, Steffen K, et al. Sports injuries and illnesses during the London Summer Olympic Games 2012. Br J Sports Med. 2013;47:407–14.

    Article  PubMed  Google Scholar 

  11. Philippon MJ, Stubbs AJ, Schenker ML, et al. Arthroscopic management of femoroacetabular impingement: osteoplasty technique and literature review. Am J Sports Med. 2007;35:1571–80.

    Article  PubMed  Google Scholar 

  12. Noguchi Y, Miura H, Takasugi S, et al. Cartilage and labrum degeneration in the dysplastic hip generally originates in the anterosuperior weight-bearing area: an arthroscopic observation. Arthroscopy. 1999;15:496–506.

    Article  CAS  PubMed  Google Scholar 

  13. Eijer H, Myers SR, Ganz R. Anterior femoroacetabular impingement after femoral neck fractures. J Orthop Trauma. 2001;15:475–81.

    Article  CAS  PubMed  Google Scholar 

  14. Leunig M, Podeszwa D, Beck M, et al. Magnetic resonance arthrography of labral disorders in hips with dysplasia and impingement. Clin Orthop. 2004;418:74–80.

    Article  Google Scholar 

  15. Ito K, Minka II MA, Leunig M, et al. Femoroacetabular impingement and the cam effect: an MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br. 2001;83:171–6.

    Article  CAS  PubMed  Google Scholar 

  16. Jager M, Wild A, Westhoff B, et al. Femoroacetabular impingement caused by a femoral osseous head-neck bump deformity: clinical, radiological, and experimental results. J Orthop Sci. 2004;9:256–63.

    Article  PubMed  Google Scholar 

  17. Stulberg SD, Cordell LD, Harris WH, et al. Unrecognized child- hood hip disease: a major cause of idiopathic osteoarthritis of the hip. In: The hip. Proceedings of the third meeting of the hip society. St. Louis: CV Mosby; 1975. p. 212–28.

    Google Scholar 

  18. Tonnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am. 1999;81:1747–70.

    Article  CAS  PubMed  Google Scholar 

  19. Notzli HP, Wyss RG, Stoecklin CH, et al. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br. 2002;84:556–60.

    Article  CAS  PubMed  Google Scholar 

  20. Beck M, Kalhor M, Leunig M, et al. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87:1012–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ganz R, Parvizi J, Beck M, et al. Femoroacetabular impingement a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20.

    Google Scholar 

  22. Siebenrock KA, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion. J Bone Joint Surg Br. 2003;85:278–86.

    Article  Google Scholar 

  23. Meyer DC, Beck M, Ellis T, Ganz R, Leunig M. Comparison of six radiographic projections to assess femoral head/neck asphericity. Clin Orthop Relat Res. 2006;445:181–5.

    PubMed  Google Scholar 

  24. Jamali AA, Mladenov K, Meyer DC, et al. Anteroposterior pelvic radiographs to assess acetabular retroversion: high validity of the “cross-over-sign”. J Orthop Res. 2007;25(6):758–65.

    Article  PubMed  Google Scholar 

  25. Kelly BT, Buly RL. Hip arthroscopy update. HSS J. 2005;1:40–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. McCarthy J, Noble P, Aluisio FV, Schuck M, Wright J, Lee JA. Anatomy, pathologic features, and treatment of acetabular labral tears. Clin Orthop. 2003;406:38–47.

    Article  Google Scholar 

  27. McSweeney SE, et al. Hip and groin pain in the professional athlete. Can Assoc Radiol J. 2012;63:87–99.

    Article  PubMed  Google Scholar 

  28. Philippon MJ, Kuppersmith DA, Wolff AB, et al. Arthroscopic findings following traumatic hip dislocation in 14 professional athletes. Arthroscopy. 2009;25:169–74.

    Article  PubMed  Google Scholar 

  29. Armfield DR, Towers JD, Robertson DD. Radiographic and MR imaging of the athletic hip. Clin Sports Med. 2006;25:211–39.

    Article  PubMed  Google Scholar 

  30. Overdeck KH, Palmer WE. Imaging of hip and groin injuries in athletes. Semin Musculoskelet Radiol. 2004;8:41–53.

    Article  PubMed  Google Scholar 

  31. Petersen W, Petersen F, Tillman B. Structure and vascularization of the acetabular labrum with regard to the pathogenesis and healing of labral lesions. Arch Orthop Trauma Surg. 2003;123(6):282–8.

    Article  Google Scholar 

  32. Connell DA, Potter HG, Wickiewicz TL. Noncontrast magnetic resonance imaging of superior labral lesions. 102 cases confirmed at arthroscopic surgery. Am J Sports Med. 1999;27:208–13.

    CAS  PubMed  Google Scholar 

  33. Armfield DR, Kim DH, Towers JD, Bradley JP, Robertson DD. Sports-related muscle injury in the lower extremity. Clin Sports Med. 2006;25(4):803–42.

    Article  PubMed  Google Scholar 

  34. Slavotinek JP, Verrall GM, Fon GT. Hamstrings injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. AJR Am J Roentgenol. 2002;179:1621–8.

    Article  PubMed  Google Scholar 

  35. Mueller-Wohlfahrt HW, Haensel L, Mithoefer K, Ekstrand J, English B, McNally S, Orchard J, van Dijk CN, Kerkhoffs GM, Schamasch P, Blottner D, Swaerd L, Goedhart E, Ueblacker P. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med. 2013;47(6):342–50.

    Article  PubMed  Google Scholar 

  36. Boutin RD, Fritz RC, Steinbach LS. Imaging of sports-related muscle injuries. Radiol Clin North Am. 2002;40(2):333–6.

    Article  PubMed  Google Scholar 

  37. Draghi F, Zacchino M, Canepari M, Nucci P, Alessandrino F. Muscle injuries: ultrasound evaluation in the acute phase. J Ultrasound. 2013;16(4):209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aroven JG, Garrick JG, Chronister RD, McDevitt ER. Quadriceps contusions: clinical results of immediate immobilization in 120 degrees of knee flexion. Clin J Sport Med. 2006;16(5):383–7.

    Article  Google Scholar 

  39. Davis JA, Stringer MD, Woodley SJ. New insights into the proximal tendons of adductor longus, adductor brevis and gracilis. Br J Sports Med. 2012;46(12):871–6.

    Article  CAS  PubMed  Google Scholar 

  40. Robinson P, Salehi F, Grainger A, Clemence M, Schilders E, O’Connor P, et al. Cadaveric and MRI study of the musculotendinous contributions to the capsule of the symphysis pubis. AJR Am J Roentgenol. 2007;188(5):W440–5.

    Article  PubMed  Google Scholar 

  41. Condon RE. Surgical anatomy of the transversus abdominis and transversalis fascia. Ann Surg. 1971;173:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akita K, Niga S, Yamato Y, Muneta T, Sato T. Anatomic basis of chronic groin pain with special reference to sports hernia. Surg Radiol Anat. 1999;21(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  43. Davies AG, Clarke AW, Gilmore J, et al. Review: imaging of groin pain in the athlete. Skeletal Radiol. 2010;39:629–44.

    Article  PubMed  Google Scholar 

  44. Branci S, Thorborg K, Bech BH, et al. MRI findings in soccer players with long-standing adductor-related groin pain and asymptomatic controls. Br J Sports Med. 2015;49:681–91.

    Article  PubMed  Google Scholar 

  45. Zoga AC, Kavanagh EC, Omar IM, et al. Athletic pubalgia and the “sports hernia”: MR imaging findings. Radiology. 2008;247:797–807.

    Article  PubMed  Google Scholar 

  46. Rossi F, Dragoni S. Acute avulsion fractures of the pelvis in adolescent competitive athletes: prevalence, location and sports distribution of 203 cases collected. Skeletal Radiol. 2001;30(3):127–31.

    Article  CAS  PubMed  Google Scholar 

  47. Stevens MA, El-Khoury GY, Kathol MH, et al. Imaging features of avulsion injuries. Radiographics. 1999;19:655–72.

    Article  CAS  PubMed  Google Scholar 

  48. Egol KA, Koval KJ, Kummer F, Frankel VH. Stress fractures of the femoral neck. Clin Othop Relat Res. 1998;348:72–8.

    Google Scholar 

  49. Warden SJ, Burr DB, Brukner PD. Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep. 2006;4(3):103–9.

    Article  PubMed  Google Scholar 

  50. Clement DB, Ammann W, Taunton JE, Lloyd-Smith R, Jesperson D, McKay H, Goldring J, Matheson GO. Exercise-induced stress injuries to the femur. Int J Sports Med. 1993;14(6):347–52.

    Article  CAS  PubMed  Google Scholar 

  51. Choi H, McCartney M, Best TM. Treatment of osteitis pubis and osteomyelitis of the pubic symphysis in athletes: a systematic review. Br J Sports Med. 2011;45(1):57–64.

    Article  PubMed  Google Scholar 

  52. Koulouris G. Imaging review of groin pain in elite athletes: an anatomic approach to imaging findings. Am J Roentgenol. 2008;191:962–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Auci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Auci, A. (2017). Radiologic Diagnosis. In: Zini, R., Volpi, P., Bisciotti, G. (eds) Groin Pain Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-41624-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41624-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41623-6

  • Online ISBN: 978-3-319-41624-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics