Advertisement

Flow Tasks Solving in Dynamic Networks with Fuzzy Lower, Upper Flow Bounds and Transmission Costs

  • Alexander Vitalievich BozhenyukEmail author
  • Evgeniya Michailovna Gerasimenko
  • Janusz Kacprzyk
  • Igor Naymovich Rozenberg
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 346)

Abstract

Tasks, considered in the first chapter of the present book, assume instant flow transition along the arcs of the graph. The present paper deals with dynamic networks, i.e. such a networks, in which flow spends certain time passing along the arcs of the graph.

References

  1. 1.
    Chabini I, Abou-Zeid M (2003) The Minimum cost flow problem in capacitated dynamic networks. Annual Meeting of the Transportation Research Board, Washington D.C., pp 1–30Google Scholar
  2. 2.
    Bozhenyuk А, Rozenberg I, Starostina T (2006) Analiz i issledovaniye potokov i zhivuchesti v transportnykx setyakh pri nechetkikh dannykh. Nauchnyy Мir, MoskvaGoogle Scholar
  3. 3.
    Bozhenyuk А, Rogushina E (2011) Method of maximum flow finding in fuzzy temporal network. European researcher. Multi Sci Periodical 5–1(7):582–583Google Scholar
  4. 4.
    Miller-Hooks E, Patterson SS (2004) On solving quickest time problems in time-dependent, dynamic network. J Math Model Algorithms 3:39–71Google Scholar
  5. 5.
    Bozhenyuk A, Gerasimenko E (2014) Flows finding in networks in fuzzy conditions. In: Kahraman C, Öztaysi B (eds) Supply chain management under fuzzines, studies in fuzziness and soft computing, vol 313, Part III, pp 269–291. Springer, Berlin. doi: 10.1007/978-3-642-53939-8_12
  6. 6.
    Bozhenyuk А, Gerasimenko E, Rozenberg I (2012) Algorithm of maximum dynamic flow finding in a fuzzy transportation network. In: Proceedings of east west fuzzy colloquium 2012 19th fuzzy colloquium, pp 125–132, 5–7 SeptGoogle Scholar
  7. 7.
    Fonoberova M (2006) On determining the minimum cost flows in dynamic networks. Bul Acad Ştiinţe Repub Mold Mat 1:51–56Google Scholar
  8. 8.
    Fonoberova M, Lozovanu D (2004) The optimal flow in dynamic networks with nonlinear cost functions on edges. Bullet Acad Sci Moldova Math 3(46):10–16Google Scholar
  9. 9.
    Bozhenyuk AV, Gerasimenko EM, Rozenberg IN (2013) Minimum cost flow defining in fuzzy dynamic graph. Izvestiya SFedU. Eng Sci 5(130):149–154Google Scholar
  10. 10.
    Dijkstra EW (1959) A note on two problems in connextion with graphs. Numer Math 1:269–271MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Edmonds J, Karp RM (1972) Theoretical Improvements in algorithmic efficiency for network flow problems. J Assoc Comput Mach 19(2):248–264CrossRefzbMATHGoogle Scholar
  12. 12.
    Tomizawa N (1971) On some techniques useful for solution of transportation network problems. Networks 1:173–194MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gerasimenko EM (2014) Potentials method for minimum cost flow defining in fuzzy dynamic graph. Izvestiya SFedU. Eng Sci 4:83–89Google Scholar
  14. 14.
    Pouly A (2010) Minimum cost flows. 23 Nov 2010. http://perso.ens-lyon.fr/eric.thierry/Graphes2010/amaury-pouly.pdf
  15. 15.
    Bozhenyuk A, Gerasimenko E (2013) Algorithm for monitoring minimum cost in fuzzy dynamic networks. Inf Technol Manag Sci (RTU Press, Riga) 16(1):53–59. doi: 10.2478/itms-2013-0008
  16. 16.
    Bozhenyuk A, Gerasimenko E, Rozenberg I, Perfilieva I (2015) Method for the minimum cost maximum flow determining in fuzzy dynamic network with nonzero flow bounds. In: Alonso José M, Bustince H, Reformat M (eds) Proceedings of the 2015 conference of the international fuzzy systems association and the european society for fuzzy logic and technology, vol 89, pp 385–392. 30th June–3rd July. Atlantic Press, Gijón, Asturias (Spain). ISBN (on-line) 978-94-62520-77-6. ISSN 1951-6851. doi: 10.2991/ifsa-eusflat-15.2015.56

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alexander Vitalievich Bozhenyuk
    • 1
    Email author
  • Evgeniya Michailovna Gerasimenko
    • 1
  • Janusz Kacprzyk
    • 2
  • Igor Naymovich Rozenberg
    • 3
  1. 1.Southern Federal UniversityTaganrogRussia
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  3. 3.Public Corporation “Research and Development Institute of Railway Engineers”MoscowRussia

Personalised recommendations