Flow Tasks in Networks in Crisp Conditions

  • Alexander Vitalievich BozhenyukEmail author
  • Evgeniya Michailovna Gerasimenko
  • Janusz Kacprzyk
  • Igor Naymovich Rozenberg
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 346)


The flow tasks arising in the study of transportation networks are relevant due to their wide practical application.


Fuzzy Number Maximum Flow Transportation Network Fuzzy Triangular Number Flow Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Frank H, Frisch IT (1971) Communication, transmission, and transportation networks. Addison Wesley, BostonGoogle Scholar
  2. 2.
    Christofides N (1975) Graph theory: an algorithmic approach. Academic Press, New YorkzbMATHGoogle Scholar
  3. 3.
    Bozhenyuk A, Gerasimenko E (2014) Flows finding in networks in fuzzy conditions. In: Kahraman C, Öztaysi B (eds) Supply chain management under fuzzines, studies in fuzziness and soft computing, vol 313, part III. Springer, Berlin, pp 269–291. doi: 10.1007/978-3-642-53939-8_12
  4. 4.
    Rukovodstvo po otsenke propusknoy sposobnosti avtomobilnikh dorog (1982). Minavtodor RSFSR, Transport, MoskvaGoogle Scholar
  5. 5.
    Kaufmann A (1975) Introduction to the theory of fuzzy subsets, vol 1. Academic Press, New YorkzbMATHGoogle Scholar
  6. 6.
    Kofman A, Hilo Aluja H (1992) Introduction the theory of fuzzy sets in enterprise management. High School, MinskGoogle Scholar
  7. 7.
    Zadeh LA, Fu KS, Tanaka K, Shimura M (eds) (1975) Fuzzy sets and their applications to cognitive and decision processes. Academic Press, New YorkGoogle Scholar
  8. 8.
    Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manag Sci 17:141–164MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borisov AN, AlekseevA V, Merkuryeva GV, Slyadz NN, Glushkov VI (1989) Fuzzy information processing in decision-making systems. Radio and Communication Publisher, MoscowGoogle Scholar
  10. 10.
    Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(part I):199–249; Inf Sci 8(part II):301–335; Inf Sci 9(part III):43–80Google Scholar
  11. 11.
    Borisov AN, Alekseev AV, Krumberg OA et al (1982) Decision making models based on linguistic variable. Zinatne, RigazbMATHGoogle Scholar
  12. 12.
    Zimmermann HJ (1991) Fuzzy set theory and its applications, 2nd edn. Kluwer Academic Publishers, BostonCrossRefzbMATHGoogle Scholar
  13. 13.
    Bozhenyuk A, Rozenberg I, Starostina T (2006) Analiz i issledovaniye potokov i zhivuchesti v transportnykx setyakh pri nechetkikh dannykh. Nauchnyy Mir, MoskvaGoogle Scholar
  14. 14.
    Bershtein LS, Dzuba TA (1998) Construction of a spanning subgraph in the fuzzy bipartite graph. In: Proceedings of EUFIT’98, Aachen, pp 47–51Google Scholar
  15. 15.
    Dubois D, Prade H (1978) Operations on fuzzy numbers. Int J Syst Sci 9(6):613–626MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ford LR, Fulkerson DR (1962) Flows in networks. Princeton University Press, PrincetonzbMATHGoogle Scholar
  17. 17.
    Minieka E (1978) Optimization algorithms for networks and graphs. Marcel Dekker Inc, New York and BaselzbMATHGoogle Scholar
  18. 18.
    Goldberg AV, Tardos E, Tarjan RE (1990) Network flow algorithms. In: Korte B, Lovasz L, Proemel HJ, Schrijver A (eds) Paths, flows and VLSI-design. Springer, Berlin, pp 101–164Google Scholar
  19. 19.
    Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice-Hall Inc, New JerseyzbMATHGoogle Scholar
  20. 20.
    Bozhenyuk A, Rozenberg I, Rogushina E (2011) The method of the maximum flow determination in the transportation network in fuzzy conditions. In: Proceedings of the congress on intelligent systems and information technologies «IS&IT’11», vol 4. Physmathlit, Moscow, pp 17–24 (Scientific Publication in 4 volumes)Google Scholar
  21. 21.
    Murty KG (1992) Network programming. Prentice Hall, Upper Saddle RiverGoogle Scholar
  22. 22.
    Even S (1979) Graph algorithms. Computer Science Press, PotomaczbMATHGoogle Scholar
  23. 23.
    Lawler EL (1976) Combinatorial optimization: networks and matroids. Holt, Rinehart, and Winston, New YorkGoogle Scholar
  24. 24.
    Papadimitriouc H, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Englewood CliffsGoogle Scholar
  25. 25.
    Tarjan RE (1983) Data structures and network algorithms. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefzbMATHGoogle Scholar
  26. 26.
    Hu TC (1969) Integer programming and network flows. Addison Wesley, BostonGoogle Scholar
  27. 27.
    Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network flow problems. J Assoc Comput Mach 19(2):248–264CrossRefzbMATHGoogle Scholar
  28. 28.
    Dinic EA (1970) Algorithm for solution of a problem of maximal flow in a network with power estimation. Soviet Math Doklady 11:1277–1280MathSciNetGoogle Scholar
  29. 29.
    Karzanov AV (1974) Determining the maximum flow in the network by the method of preflows. Soviet Math Doklady 15:434–437zbMATHGoogle Scholar
  30. 30.
    Cherkassky RV (1977) Algorithms of construction of maximal flow in networks with complexity \( O\left( {n^{ 2} \sqrt m } \right) \) operations. Math Methods Solut Econ Probl 7:112–125Google Scholar
  31. 31.
    Cherkassky BV (1979) A fast algorithm for computing maximum flow in a network. In: Karzanov AV (eds) Collected papers, combinatorial methods for flow problems. The Institute for Systems Studies, Moscow, vol 3, pp 90–96 (English translation appears in AMS Trans 158:23–30 (1994))Google Scholar
  32. 32.
    Orlin JB (2013) Max flows in O(nm) time or better. In: Proceedings of the 2013 symposium on the theory of computing, pp 765–774Google Scholar
  33. 33.
    Bozhenyuk AV, Rozenberg IN, Rogushina EM (2011) Approach of maximum flow determining for fuzzy transportation network. Izvestiya SFedU Eng Sci 5(118):83–88Google Scholar
  34. 34.
    Chanas S, Kolodziejczyk W (1982) Maximum flow in a network with fuzzy arc capacities. Fuzzy Sets Syst 8(2):165-153MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Chanas S, Delgado M, Verdegay JL, Vila M (1995) Fuzzy optimal flow on imprecise structures. Eur J Oper Res 83(3):568–580CrossRefzbMATHGoogle Scholar
  36. 36.
    Kumar A, Kaur J, Singh P (2010) Fuzzy optimal solution of fully fuzzy linear programming problems with inequality constraints. Int J Appl Math Comput Sci 6:37–41Google Scholar
  37. 37.
    Kumar A, Kaur J (2011) Solution of fuzzy maximal flow problems using fuzzy linear programming. Int J Comput Math Sci 5(2):62–66MathSciNetGoogle Scholar
  38. 38.
    Yi T, Murty KG (1991) Finding maximum flows in networks with nonzero lower bounds using Preflow methods. In: Technical report, IOE Department, University of Michigan, Ann Arbor, MichGoogle Scholar
  39. 39.
    Garcia-Diaz A, Phillips DT (1981) Fundamentals of network analysis. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  40. 40.
    Busacker RG, Gowen P (1961) A procedure for determining a family of minimum-cost network flow patterns. In: Technical report 15, operations research office, John Hopkins UniversityGoogle Scholar
  41. 41.
    Klein M (1967) A primal method for minimal cost flows with applications to the assignment and transportation problems. Manage Sci 14:205–220CrossRefzbMATHGoogle Scholar
  42. 42.
    Kovács P (2015) Minimum-cost flow algorithms: an experimental evaluation. Optim Methods Softw 30(1):94–127MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Ahuja RK, Goldberg AV, Orlin JB, Tarjan RE (1992) Finding minimum-cost flows by double scaling. Mathematical Programming 53:243–266MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Warshall S (1962) A theorem on boolean matrices. J ACM 9(1):11–12MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345CrossRefGoogle Scholar
  46. 46.
    Ganesan K, Veeramani P (2006) Fuzzy linear programs with trapezoidal fuzzy numbers. Ann Oper Res 143:305–315Google Scholar
  47. 47.
    Thakre PA, Shelar DS, Thakre SP (2009) Solving fuzzy linear programming problem as multi objective linear programming problem. In: Proceedings of the world congress on engineering (WCE 2009), London, U.KGoogle Scholar
  48. 48.
    Dutta D, Murthy AS (2010) Multi-choice goal programming approaches for a fuzzy transportation problem. IJRRAS 2(2):132–139zbMATHGoogle Scholar
  49. 49.
    Kumar A, Singh P, Kaur J (2010) Generalized simplex algorithm to solve fuzzy linear programming problems with ranking of generalized fuzzy numbers. Turkish J Fuzzy Syst (TJFS) 1(2):80–103Google Scholar
  50. 50.
    Maleki HR, Tata M, Mashinchi M (2000) Linear programming with fuzzy variables. Fuzzy Sets Syst 109:21–33MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Maleki HR, Mashinchi M (2004) Fuzzy number linear programming: a probabilistic approach. J Appl Math Comput 15:333–341MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Yoon KP (1996) A probabilistic approach to rank complex fuzzy numbers. Fuzzy Sets Syst 80:167–176MathSciNetCrossRefGoogle Scholar
  53. 53.
    Allahviranloo T, Lotfi FH, Kiasary MK, Kiani NA, Alizadeh L (2008) Solving fully fuzzy linear programming problem by the ranking function. Appl Math Sci 2(1):19–32MathSciNetzbMATHGoogle Scholar
  54. 54.
    Gerasimenko EM (2012) Minimum cost flow finding in the network by the method of expectation ranking of fuzzy cost functions. Izvestiya SFedU Eng Sci 4(129):247–251Google Scholar
  55. 55.
    Chanas S, Kuchta D (1994) Linear programming problem with fuzzy coefficients in the objective function. In: Delgado M et al (eds) Fuzzy Optimization, Physica-Verlag, Heidelberg, pp 148–157Google Scholar
  56. 56.
    Malyshev NG, Bershteyn LS, Bozhenyuk AV (1991) Nechetkiye modeli dlya ekspertnykh sistem v SAPR. Energoatomizdat, MoscowGoogle Scholar
  57. 57.
    Bozhenyuk A, Gerasimenko E (2013) Methods for maximum and minimum cost flow determining in fuzzy conditions. World Appl Sci J 22:76–81. doi: 10.5829/ (Special Issue on Techniques and Technologies)Google Scholar
  58. 58.
    Tardos E (1985) A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3):247–255MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Goldberg AV, Tarjan RE (1989) Finding minimum-cost circulations by canceling negative cycles. J ACM 36(4):873–886MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Aronson JE (1989) A survey of dynamic network flows. Ann Oper Res 20:1–66MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Ciurea E (1997) Two problems concerning dynamic flows in node and arc capacitated networks. Comput Sci J Moldova 5(3):15, 298–308Google Scholar
  62. 62.
    Silver MR, de Weck O (2006) Time-expanded decision network: a new framework for designing evolvable complex systems. In: Proceedings of 11th AIAA/ISSMO multidisciplinary analysis and optimization conference 6–8 September, Portsmouth, Virginia, pp 1–15Google Scholar
  63. 63.
    Lovetskii S, Melamed I (1987) Dynamic flows in networks. Autom Remote Control 48(11):1417–1434 (Translated from Avtomatika i Telemekhanika (1987), vol 11, pp 7–29)Google Scholar
  64. 64.
    Powell W, Jaillet P, Odoni A (1995) Stochastic and dynamic networks and routing. In: Ball MO, Magnanti TL, Monma CL, Nemhauser GL (eds) Handbook in operations research and management science, vol 8. Network Routing, Elsevier, Amsterdam, pp 141–296Google Scholar
  65. 65.
    Orlin JB (1983) Maximum-throughput dynamic network flows. Mathematical Programming 27:214–231MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Fonoberova MA, Lozovanu DD (2004) The maximum flow in dynamic networks. Comput Sci J Moldova 12(3):36, 387–396Google Scholar
  67. 67.
    Fleischer L, Skutella M (2003) Minimum cost flows over time without intermediate storage. In: Proceedings of the 35th ACM/SIAM symposium on discrete algorithms (SODA), pp 66–75Google Scholar
  68. 68.
    Kotnyek B (2003) An annotated overview of dynamic network flows. In: Technical report, INRIA, Paris, No 4936,
  69. 69.
    Orlin JB (1984) Minimum convex cost dynamic network flows. Math Oper Res 9(2):190–207MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Gale D (1959) Transient flows in networks. Michigan Math J 6:59–63MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Halpern J (1979) A generalized dynamic flows problem. Networks 9:133–167MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Cai X, Sha D, Wong CK (2001) Time-varying minimum cost flow-problems. Eur J Oper Res 131:352–374MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Nasrabadi E, Hashemi SM (2010) Minimum cost time-varying network flow problems. Optim Methods Softw 25(3):429–447MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Chalmet L, Francis R, Saunders P (1982) Network models for building evacuation. Manag Sci 28:86–105CrossRefGoogle Scholar
  75. 75.
    Cooke L, Halsey E (1966) The shortest route through a network with time-dependent internodal transit times. J Math Anal Appl 14:492–498MathSciNetzbMATHGoogle Scholar
  76. 76.
    Ahuja RK, Orlin JB, Pallottino S, Scutella MG (2003) Dynamic shortest paths minimizing travel times and costs. Networks 41:197–205MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Chabini L (1998) Discrete dynamic shortest path problems in transportation applications: complexity and algorithms with optimal run time. Transp Res Rec 1645:170–175CrossRefGoogle Scholar
  78. 78.
    Orda A, Rom R (1995) On continuous network flows. Oper Res Lett 17:27–36MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Pallottino S, Scutellà MG (1998) Shortest path algorithms in transportation models: classical and innovative aspects. In: Marcotte P, Nguyen S (eds) Equilibrium and advanced transportation modelling, Kluwer, pp 245–281Google Scholar
  80. 80.
    Hall A, Langkau K, Skutella M (2007) An FPTAS for quickest multicommodity flows with inflow-dependent transit times. Algorithmica 47:299–321MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Fleisher LK, Scutella M (2007) Quickest flows over time. SIAM J Comput 36:1600–1630MathSciNetCrossRefGoogle Scholar
  82. 82.
    Glockner GD, Nemhauser GL, Tovey CA (2001) Dynamic network flow with uncertain arc capacities: decomposition algorithm and computational results. Comput Optim Appl 18(3):233–250MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alexander Vitalievich Bozhenyuk
    • 1
    Email author
  • Evgeniya Michailovna Gerasimenko
    • 1
  • Janusz Kacprzyk
    • 2
  • Igor Naymovich Rozenberg
    • 3
  1. 1.Southern Federal UniversityTaganrogRussia
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  3. 3.Public Corporation “Research and Development Institute of Railway Engineers”MoscowRussia

Personalised recommendations