Skip to main content

Flow Tasks in Networks in Crisp Conditions

  • Chapter
  • First Online:
Flows in Networks Under Fuzzy Conditions

Abstract

The flow tasks arising in the study of transportation networks are relevant due to their wide practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank H, Frisch IT (1971) Communication, transmission, and transportation networks. Addison Wesley, Boston

    Google Scholar 

  2. Christofides N (1975) Graph theory: an algorithmic approach. Academic Press, New York

    MATH  Google Scholar 

  3. Bozhenyuk A, Gerasimenko E (2014) Flows finding in networks in fuzzy conditions. In: Kahraman C, Öztaysi B (eds) Supply chain management under fuzzines, studies in fuzziness and soft computing, vol 313, part III. Springer, Berlin, pp 269–291. doi:10.1007/978-3-642-53939-8_12

  4. Rukovodstvo po otsenke propusknoy sposobnosti avtomobilnikh dorog (1982). Minavtodor RSFSR, Transport, Moskva

    Google Scholar 

  5. Kaufmann A (1975) Introduction to the theory of fuzzy subsets, vol 1. Academic Press, New York

    MATH  Google Scholar 

  6. Kofman A, Hilo Aluja H (1992) Introduction the theory of fuzzy sets in enterprise management. High School, Minsk

    Google Scholar 

  7. Zadeh LA, Fu KS, Tanaka K, Shimura M (eds) (1975) Fuzzy sets and their applications to cognitive and decision processes. Academic Press, New York

    Google Scholar 

  8. Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manag Sci 17:141–164

    Article  MathSciNet  MATH  Google Scholar 

  9. Borisov AN, AlekseevA V, Merkuryeva GV, Slyadz NN, Glushkov VI (1989) Fuzzy information processing in decision-making systems. Radio and Communication Publisher, Moscow

    Google Scholar 

  10. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(part I):199–249; Inf Sci 8(part II):301–335; Inf Sci 9(part III):43–80

    Google Scholar 

  11. Borisov AN, Alekseev AV, Krumberg OA et al (1982) Decision making models based on linguistic variable. Zinatne, Riga

    MATH  Google Scholar 

  12. Zimmermann HJ (1991) Fuzzy set theory and its applications, 2nd edn. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  13. Bozhenyuk A, Rozenberg I, Starostina T (2006) Analiz i issledovaniye potokov i zhivuchesti v transportnykx setyakh pri nechetkikh dannykh. Nauchnyy Mir, Moskva

    Google Scholar 

  14. Bershtein LS, Dzuba TA (1998) Construction of a spanning subgraph in the fuzzy bipartite graph. In: Proceedings of EUFIT’98, Aachen, pp 47–51

    Google Scholar 

  15. Dubois D, Prade H (1978) Operations on fuzzy numbers. Int J Syst Sci 9(6):613–626

    Article  MathSciNet  MATH  Google Scholar 

  16. Ford LR, Fulkerson DR (1962) Flows in networks. Princeton University Press, Princeton

    MATH  Google Scholar 

  17. Minieka E (1978) Optimization algorithms for networks and graphs. Marcel Dekker Inc, New York and Basel

    MATH  Google Scholar 

  18. Goldberg AV, Tardos E, Tarjan RE (1990) Network flow algorithms. In: Korte B, Lovasz L, Proemel HJ, Schrijver A (eds) Paths, flows and VLSI-design. Springer, Berlin, pp 101–164

    Google Scholar 

  19. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice-Hall Inc, New Jersey

    MATH  Google Scholar 

  20. Bozhenyuk A, Rozenberg I, Rogushina E (2011) The method of the maximum flow determination in the transportation network in fuzzy conditions. In: Proceedings of the congress on intelligent systems and information technologies «IS&IT’11», vol 4. Physmathlit, Moscow, pp 17–24 (Scientific Publication in 4 volumes)

    Google Scholar 

  21. Murty KG (1992) Network programming. Prentice Hall, Upper Saddle River

    Google Scholar 

  22. Even S (1979) Graph algorithms. Computer Science Press, Potomac

    MATH  Google Scholar 

  23. Lawler EL (1976) Combinatorial optimization: networks and matroids. Holt, Rinehart, and Winston, New York

    Google Scholar 

  24. Papadimitriouc H, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  25. Tarjan RE (1983) Data structures and network algorithms. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  26. Hu TC (1969) Integer programming and network flows. Addison Wesley, Boston

    Google Scholar 

  27. Edmonds J, Karp RM (1972) Theoretical improvements in algorithmic efficiency for network flow problems. J Assoc Comput Mach 19(2):248–264

    Article  MATH  Google Scholar 

  28. Dinic EA (1970) Algorithm for solution of a problem of maximal flow in a network with power estimation. Soviet Math Doklady 11:1277–1280

    MathSciNet  Google Scholar 

  29. Karzanov AV (1974) Determining the maximum flow in the network by the method of preflows. Soviet Math Doklady 15:434–437

    MATH  Google Scholar 

  30. Cherkassky RV (1977) Algorithms of construction of maximal flow in networks with complexity \( O\left( {n^{ 2} \sqrt m } \right) \) operations. Math Methods Solut Econ Probl 7:112–125

    Google Scholar 

  31. Cherkassky BV (1979) A fast algorithm for computing maximum flow in a network. In: Karzanov AV (eds) Collected papers, combinatorial methods for flow problems. The Institute for Systems Studies, Moscow, vol 3, pp 90–96 (English translation appears in AMS Trans 158:23–30 (1994))

    Google Scholar 

  32. Orlin JB (2013) Max flows in O(nm) time or better. In: Proceedings of the 2013 symposium on the theory of computing, pp 765–774

    Google Scholar 

  33. Bozhenyuk AV, Rozenberg IN, Rogushina EM (2011) Approach of maximum flow determining for fuzzy transportation network. Izvestiya SFedU Eng Sci 5(118):83–88

    Google Scholar 

  34. Chanas S, Kolodziejczyk W (1982) Maximum flow in a network with fuzzy arc capacities. Fuzzy Sets Syst 8(2):165-153

    Article  MathSciNet  MATH  Google Scholar 

  35. Chanas S, Delgado M, Verdegay JL, Vila M (1995) Fuzzy optimal flow on imprecise structures. Eur J Oper Res 83(3):568–580

    Article  MATH  Google Scholar 

  36. Kumar A, Kaur J, Singh P (2010) Fuzzy optimal solution of fully fuzzy linear programming problems with inequality constraints. Int J Appl Math Comput Sci 6:37–41

    Google Scholar 

  37. Kumar A, Kaur J (2011) Solution of fuzzy maximal flow problems using fuzzy linear programming. Int J Comput Math Sci 5(2):62–66

    MathSciNet  Google Scholar 

  38. Yi T, Murty KG (1991) Finding maximum flows in networks with nonzero lower bounds using Preflow methods. In: Technical report, IOE Department, University of Michigan, Ann Arbor, Mich

    Google Scholar 

  39. Garcia-Diaz A, Phillips DT (1981) Fundamentals of network analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  40. Busacker RG, Gowen P (1961) A procedure for determining a family of minimum-cost network flow patterns. In: Technical report 15, operations research office, John Hopkins University

    Google Scholar 

  41. Klein M (1967) A primal method for minimal cost flows with applications to the assignment and transportation problems. Manage Sci 14:205–220

    Article  MATH  Google Scholar 

  42. Kovács P (2015) Minimum-cost flow algorithms: an experimental evaluation. Optim Methods Softw 30(1):94–127

    Article  MathSciNet  MATH  Google Scholar 

  43. Ahuja RK, Goldberg AV, Orlin JB, Tarjan RE (1992) Finding minimum-cost flows by double scaling. Mathematical Programming 53:243–266

    Article  MathSciNet  MATH  Google Scholar 

  44. Warshall S (1962) A theorem on boolean matrices. J ACM 9(1):11–12

    Article  MathSciNet  MATH  Google Scholar 

  45. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345

    Article  Google Scholar 

  46. Ganesan K, Veeramani P (2006) Fuzzy linear programs with trapezoidal fuzzy numbers. Ann Oper Res 143:305–315

    Google Scholar 

  47. Thakre PA, Shelar DS, Thakre SP (2009) Solving fuzzy linear programming problem as multi objective linear programming problem. In: Proceedings of the world congress on engineering (WCE 2009), London, U.K

    Google Scholar 

  48. Dutta D, Murthy AS (2010) Multi-choice goal programming approaches for a fuzzy transportation problem. IJRRAS 2(2):132–139

    MATH  Google Scholar 

  49. Kumar A, Singh P, Kaur J (2010) Generalized simplex algorithm to solve fuzzy linear programming problems with ranking of generalized fuzzy numbers. Turkish J Fuzzy Syst (TJFS) 1(2):80–103

    Google Scholar 

  50. Maleki HR, Tata M, Mashinchi M (2000) Linear programming with fuzzy variables. Fuzzy Sets Syst 109:21–33

    Article  MathSciNet  MATH  Google Scholar 

  51. Maleki HR, Mashinchi M (2004) Fuzzy number linear programming: a probabilistic approach. J Appl Math Comput 15:333–341

    Article  MathSciNet  MATH  Google Scholar 

  52. Yoon KP (1996) A probabilistic approach to rank complex fuzzy numbers. Fuzzy Sets Syst 80:167–176

    Article  MathSciNet  Google Scholar 

  53. Allahviranloo T, Lotfi FH, Kiasary MK, Kiani NA, Alizadeh L (2008) Solving fully fuzzy linear programming problem by the ranking function. Appl Math Sci 2(1):19–32

    MathSciNet  MATH  Google Scholar 

  54. Gerasimenko EM (2012) Minimum cost flow finding in the network by the method of expectation ranking of fuzzy cost functions. Izvestiya SFedU Eng Sci 4(129):247–251

    Google Scholar 

  55. Chanas S, Kuchta D (1994) Linear programming problem with fuzzy coefficients in the objective function. In: Delgado M et al (eds) Fuzzy Optimization, Physica-Verlag, Heidelberg, pp 148–157

    Google Scholar 

  56. Malyshev NG, Bershteyn LS, Bozhenyuk AV (1991) Nechetkiye modeli dlya ekspertnykh sistem v SAPR. Energoatomizdat, Moscow

    Google Scholar 

  57. Bozhenyuk A, Gerasimenko E (2013) Methods for maximum and minimum cost flow determining in fuzzy conditions. World Appl Sci J 22:76–81. doi:10.5829/idosi.wasj.2013.22.tt.22143 (Special Issue on Techniques and Technologies)

    Google Scholar 

  58. Tardos E (1985) A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3):247–255

    Article  MathSciNet  MATH  Google Scholar 

  59. Goldberg AV, Tarjan RE (1989) Finding minimum-cost circulations by canceling negative cycles. J ACM 36(4):873–886

    Article  MathSciNet  MATH  Google Scholar 

  60. Aronson JE (1989) A survey of dynamic network flows. Ann Oper Res 20:1–66

    Article  MathSciNet  MATH  Google Scholar 

  61. Ciurea E (1997) Two problems concerning dynamic flows in node and arc capacitated networks. Comput Sci J Moldova 5(3):15, 298–308

    Google Scholar 

  62. Silver MR, de Weck O (2006) Time-expanded decision network: a new framework for designing evolvable complex systems. In: Proceedings of 11th AIAA/ISSMO multidisciplinary analysis and optimization conference 6–8 September, Portsmouth, Virginia, pp 1–15

    Google Scholar 

  63. Lovetskii S, Melamed I (1987) Dynamic flows in networks. Autom Remote Control 48(11):1417–1434 (Translated from Avtomatika i Telemekhanika (1987), vol 11, pp 7–29)

    Google Scholar 

  64. Powell W, Jaillet P, Odoni A (1995) Stochastic and dynamic networks and routing. In: Ball MO, Magnanti TL, Monma CL, Nemhauser GL (eds) Handbook in operations research and management science, vol 8. Network Routing, Elsevier, Amsterdam, pp 141–296

    Google Scholar 

  65. Orlin JB (1983) Maximum-throughput dynamic network flows. Mathematical Programming 27:214–231

    Article  MathSciNet  MATH  Google Scholar 

  66. Fonoberova MA, Lozovanu DD (2004) The maximum flow in dynamic networks. Comput Sci J Moldova 12(3):36, 387–396

    Google Scholar 

  67. Fleischer L, Skutella M (2003) Minimum cost flows over time without intermediate storage. In: Proceedings of the 35th ACM/SIAM symposium on discrete algorithms (SODA), pp 66–75

    Google Scholar 

  68. Kotnyek B (2003) An annotated overview of dynamic network flows. In: Technical report, INRIA, Paris, No 4936, http://hal.inria.fr/inria-00071643/

  69. Orlin JB (1984) Minimum convex cost dynamic network flows. Math Oper Res 9(2):190–207

    Article  MathSciNet  MATH  Google Scholar 

  70. Gale D (1959) Transient flows in networks. Michigan Math J 6:59–63

    Article  MathSciNet  MATH  Google Scholar 

  71. Halpern J (1979) A generalized dynamic flows problem. Networks 9:133–167

    Article  MathSciNet  MATH  Google Scholar 

  72. Cai X, Sha D, Wong CK (2001) Time-varying minimum cost flow-problems. Eur J Oper Res 131:352–374

    Article  MathSciNet  MATH  Google Scholar 

  73. Nasrabadi E, Hashemi SM (2010) Minimum cost time-varying network flow problems. Optim Methods Softw 25(3):429–447

    Article  MathSciNet  MATH  Google Scholar 

  74. Chalmet L, Francis R, Saunders P (1982) Network models for building evacuation. Manag Sci 28:86–105

    Article  Google Scholar 

  75. Cooke L, Halsey E (1966) The shortest route through a network with time-dependent internodal transit times. J Math Anal Appl 14:492–498

    MathSciNet  MATH  Google Scholar 

  76. Ahuja RK, Orlin JB, Pallottino S, Scutella MG (2003) Dynamic shortest paths minimizing travel times and costs. Networks 41:197–205

    Article  MathSciNet  MATH  Google Scholar 

  77. Chabini L (1998) Discrete dynamic shortest path problems in transportation applications: complexity and algorithms with optimal run time. Transp Res Rec 1645:170–175

    Article  Google Scholar 

  78. Orda A, Rom R (1995) On continuous network flows. Oper Res Lett 17:27–36

    Article  MathSciNet  MATH  Google Scholar 

  79. Pallottino S, Scutellà MG (1998) Shortest path algorithms in transportation models: classical and innovative aspects. In: Marcotte P, Nguyen S (eds) Equilibrium and advanced transportation modelling, Kluwer, pp 245–281

    Google Scholar 

  80. Hall A, Langkau K, Skutella M (2007) An FPTAS for quickest multicommodity flows with inflow-dependent transit times. Algorithmica 47:299–321

    Article  MathSciNet  MATH  Google Scholar 

  81. Fleisher LK, Scutella M (2007) Quickest flows over time. SIAM J Comput 36:1600–1630

    Article  MathSciNet  Google Scholar 

  82. Glockner GD, Nemhauser GL, Tovey CA (2001) Dynamic network flow with uncertain arc capacities: decomposition algorithm and computational results. Comput Optim Appl 18(3):233–250

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vitalievich Bozhenyuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bozhenyuk, A.V., Gerasimenko, E.M., Kacprzyk, J., Rozenberg, I.N. (2017). Flow Tasks in Networks in Crisp Conditions. In: Flows in Networks Under Fuzzy Conditions. Studies in Fuzziness and Soft Computing, vol 346. Springer, Cham. https://doi.org/10.1007/978-3-319-41618-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41618-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41617-5

  • Online ISBN: 978-3-319-41618-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics