Skip to main content

Epigenetics, Obesity, and Colon Cancer

  • Chapter
  • First Online:
  • 839 Accesses

Part of the book series: Energy Balance and Cancer ((EBAC,volume 11))

Abstract

Obesity is an important risk factor in incidence of colorectal cancer, particularly in males. The molecular underpinnings of increased risk are unclear. Recent work has suggested that altered epigenetic regulation resulting from complex factors related to obesity may play a role in the increased incidence of colon cancer. Here we review the relationship of colon cancer and alterations in epigenetic regulation in obesity. The colon epithelial cell is impacted by multiple signaling inputs subject to alteration in obese individuals including adipokines, alterations in metabolism, changes in intestinal microbiota, and chronic inflammation. Obesity-related changes in these pathways likely result in alterations in the epigenome of colonic epithelial cells, with the potential to influence cancer development and/or progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hooper CE (1956) Cell turnover in epithelial populations. J Histochem Cytochem 4:531–540

    Article  CAS  PubMed  Google Scholar 

  2. Tomasetti C, Vogelstein B (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Groos S, Hunefeld G, Luciano L (2001) Epithelial cell turnover—extracellular matrix relationship in the small intestine of human adults. Ital J Anat Embryol 106:353–361

    CAS  PubMed  Google Scholar 

  4. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85

    Article  CAS  PubMed  Google Scholar 

  5. Bardou M, Barkun AN, Martel M (2013) Obesity and colorectal cancer. Gut 62:933–947

    Article  CAS  PubMed  Google Scholar 

  6. Kant P, Hull MA (2011) Excess body weight and obesity—the link with gastrointestinal and hepatobiliary cancer. Nat Rev Gastroenterol Hepatol 8:224–238

    Article  CAS  PubMed  Google Scholar 

  7. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591

    Article  CAS  PubMed  Google Scholar 

  8. Lao VV, Grady WM (2011) Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 8:686–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hammoud SS, Cairns BR, Jones DA (2013) Epigenetic regulation of colon cancer and intestinal stem cells. Curr Opin Cell Biol 25:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9:489–499

    Article  CAS  PubMed  Google Scholar 

  11. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  CAS  PubMed  Google Scholar 

  12. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  CAS  PubMed  Google Scholar 

  13. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA et al (2012) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 44:40–46

    Article  CAS  Google Scholar 

  14. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  15. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, Pikarski E, Young RA, Niveleau A, Cedar H, Simon I (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38:149–153

    Article  CAS  PubMed  Google Scholar 

  16. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487:330-337.

    Google Scholar 

  17. Dahl E, Wiesmann F, Woenckhaus M, Stoehr R, Wild PJ, Veeck J, Knuchel R, Klopocki E, Sauter G, Simon R et al (2007) Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma. Oncogene 26:5680–5691

    Article  CAS  PubMed  Google Scholar 

  18. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811

    CAS  PubMed  Google Scholar 

  19. Derks S, Bosch LJ, Niessen HE, Moerkerk PT, van den Bosch SM, Carvalho B, Mongera S, Voncken JW, Meijer GA, de Bruine AP et al (2009) Promoter CpG island hypermethylation- and H3K9me3 and H3K27me3-mediated epigenetic silencing targets the deleted in colon cancer (DCC) gene in colorectal carcinogenesis without affecting neighboring genes on chromosomal region 18q21. Carcinogenesis 30:1041–1048

    Article  CAS  PubMed  Google Scholar 

  20. Shin SK, Nagasaka T, Jung BH, Matsubara N, Kim WH, Carethers JM, Boland CR, Goel A (2007) Epigenetic and genetic alterations in Netrin-1 receptors UNC5C and DCC in human colon cancer. Gastroenterology 133:1849–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van Engeland M et al (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36:417–422

    Article  CAS  PubMed  Google Scholar 

  22. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X, Ahmed S, Konishi K et al (2007) Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A 104:18654–18659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507

    Article  CAS  PubMed  Google Scholar 

  25. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    Article  CAS  PubMed  Google Scholar 

  26. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  CAS  PubMed  Google Scholar 

  27. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D et al (2012) A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 22:837–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  31. Chi AS, Bernstein BE (2009) Developmental biology. Pluripotent chromatin state. Science 323:220–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41:1350–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akhtar-Zaidi B, Cowper-Sal-lari R, Corradin O, Saiakhova A, Bartels CF, Balasubramanian D, Myeroff L, Lutterbaugh J, Jarrar A, Kalady MF et al (2012) Epigenomic enhancer profiling defines a signature of colon cancer. Science 336:736–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  CAS  PubMed  Google Scholar 

  36. Kanai Y (2010) Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci 101:36–45

    Article  CAS  PubMed  Google Scholar 

  37. Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS, Rognum TO, Skotheim RI, Thiis-Evensen E, Lothe RA (2008) Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer 7:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Worthley DL, Whitehall VL, Buttenshaw RL, Irahara N, Greco SA, Ramsnes I, Mallitt KA, Le Leu RK, Winter J, Hu Y et al (2010) DNA methylation within the normal colorectal mucosa is associated with pathway-specific predisposition to cancer. Oncogene 29:1653–1662

    Article  CAS  PubMed  Google Scholar 

  39. Suter CM, Martin DI, Ward RL (2004) Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 19:95–101

    Article  PubMed  Google Scholar 

  40. Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, Einspahr JG et al (2005) MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst 97:1330–1338

    Article  CAS  PubMed  Google Scholar 

  41. Silviera ML, Smith BP, Powell J, Sapienza C (2012) Epigenetic differences in normal colon mucosa of cancer patients suggest altered dietary metabolic pathways. Cancer Prev Res 5:374–384

    Article  CAS  Google Scholar 

  42. Vainio H, Kaaks R, Bianchini F (2002) Weight control and physical activity in cancer prevention: international evaluation of the evidence. Eur J Cancer Prev 11(Suppl 2):S94–S100

    PubMed  Google Scholar 

  43. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  44. Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1995) Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med 122:327–334

    Article  CAS  PubMed  Google Scholar 

  45. Ning Y, Wang L, Giovannucci EL (2010) A quantitative analysis of body mass index and colorectal cancer: findings from 56 observational studies. Obes Rev 11:19–30

    Article  CAS  PubMed  Google Scholar 

  46. Bird CL, Frankl HD, Lee ER, Haile RW (1998) Obesity, weight gain, large weight changes, and adenomatous polyps of the left colon and rectum. Am J Epidemiol 147:670–680

    Article  CAS  PubMed  Google Scholar 

  47. Giovannucci E, Colditz GA, Stampfer MJ, Willett WC (1996) Physical activity, obesity, and risk of colorectal adenoma in women (United States). Cancer Causes Control 7:253–263

    Article  CAS  PubMed  Google Scholar 

  48. Murphy TK, Calle EE, Rodriguez C, Kahn HS, Thun MJ (2000) Body mass index and colon cancer mortality in a large prospective study. Am J Epidemiol 152:847–854

    Article  CAS  PubMed  Google Scholar 

  49. Comstock SS, Hortos K, Kovan B, McCaskey S, Pathak DR, Fenton JI (2014) Adipokines and obesity are associated with colorectal polyps in adult males: a cross-sectional study. PLoS One 9, e85939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sikalidis AK, Fitch MD, Fleming SE (2013) Diet induced obesity increases the risk of colonic tumorigenesis in mice. Pathol Oncol Res 19:657–666

    Article  CAS  PubMed  Google Scholar 

  51. Tuominen I, Al-Rabadi L, Stavrakis D, Karagiannides I, Pothoulakis C, Bugni JM (2013) Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice. PLoS One 8, e60939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gravaghi C, Bo J, Laperle KM, Quimby F, Kucherlapati R, Edelmann W, Lamprecht SA (2008) Obesity enhances gastrointestinal tumorigenesis in Apc-mutant mice. Int J Obes (Lond) 32:1716–1719

    Article  CAS  Google Scholar 

  53. Lee WM, Lu S, Medline A, Archer MC (2001) Susceptibility of lean and obese Zucker rats to tumorigenesis induced by N-methyl-N-nitrosourea. Cancer Lett 162:155–160

    Article  CAS  PubMed  Google Scholar 

  54. Bardou M, Barkun AN, Martel M (2013) Republished: obesity and colorectal cancer. Postgrad Med J 89:519–533

    Article  CAS  PubMed  Google Scholar 

  55. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H, Lystig T, Sullivan M, Bouchard C, Carlsson B et al (2007) Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357:741–752

    Article  PubMed  Google Scholar 

  56. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, Lamonte MJ, Stroup AM, Hunt SC (2007) Long-term mortality after gastric bypass surgery. N Engl J Med 357:753–761

    Article  CAS  PubMed  Google Scholar 

  57. Boeing H (2013) Obesity and cancer—the update 2013. Best Pract Res Clin Endocrinol Metab 27:219–227

    Article  PubMed  Google Scholar 

  58. Yildiz BO, Suchard MA, Wong ML, McCann SM, Licinio J (2004) Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S A 101:10434–10439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaleel F, Jaleel A, Rahman MA, Alam E (2006) Comparison of adiponectin, leptin and blood lipid levels in normal and obese postmenopausal women. J Pak Med Assoc 56:391–394

    PubMed  Google Scholar 

  60. Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11:886–895

    Article  CAS  PubMed  Google Scholar 

  61. Park HS, Park JY, Yu R (2005) Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract 69:29–35

    Article  CAS  PubMed  Google Scholar 

  62. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  64. Westbrook AM, Szakmary A, Schiestl RH (2010) Mechanisms of intestinal inflammation and development of associated cancers: lessons learned from mouse models. Mutat Res 705:40–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Renehan AG, Frystyk J, Flyvbjerg A (2006) Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab 17:328–336

    Article  CAS  PubMed  Google Scholar 

  66. McKeown-Eyssen G (1994) Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol Biomarkers Prev 3:687–695

    CAS  PubMed  Google Scholar 

  67. Giovannucci E (1995) Insulin and colon cancer. Cancer Causes Control 6:164–179

    Article  CAS  PubMed  Google Scholar 

  68. Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316

    Article  CAS  PubMed  Google Scholar 

  69. Cowey S, Hardy RW (2006) The metabolic syndrome: A high-risk state for cancer? Am J Pathol 169:1505–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Donohoe CL, Pidgeon GP, Lysaght J, Reynolds JV (2010) Obesity and gastrointestinal cancer. Br J Surg 97:628–642

    Article  CAS  PubMed  Google Scholar 

  71. Akin H, Tozun N (2014) Diet, microbiota, and colorectal cancer. J Clin Gastroenterol 48(Suppl 1):S67–S69

    Article  CAS  PubMed  Google Scholar 

  72. Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ (2014) The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell 54:309–320

    Article  CAS  PubMed  Google Scholar 

  73. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  CAS  PubMed  Google Scholar 

  74. Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435

    Article  CAS  PubMed  Google Scholar 

  75. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  76. Steinhoff U (2005) Who controls the crowd? New findings and old questions about the intestinal microflora. Immunol Lett 99:12–16

    Article  CAS  PubMed  Google Scholar 

  77. DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83:460–469

    Article  PubMed  Google Scholar 

  78. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  81. Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587:4153–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  83. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Dore J, Henegar C et al (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59:3049–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  86. Shen XJ, Rawls JF, Randall T, Burcal L, Mpande CN, Jenkins N, Jovov B, Abdo Z, Sandler RS, Keku TO (2010) Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 1:138–147

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, Holt RA (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kado S, Uchida K, Funabashi H, Iwata S, Nagata Y, Ando M, Onoue M, Matsuoka Y, Ohwaki M, Morotomi M (2001) Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res 61:2395–2398

    CAS  PubMed  Google Scholar 

  90. Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H (2008) Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol 32:609–617

    PubMed  Google Scholar 

  91. Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C et al (2014) High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514:508–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  PubMed  CAS  Google Scholar 

  93. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5:178ra141

    Article  CAS  Google Scholar 

  96. Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, Ivanisevic J, Cho K, Wick EC, Hechenbleikner EM et al (2015) Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21:891–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Degirolamo C, Modica S, Palasciano G, Moschetta A (2011) Bile acids and colon cancer: Solving the puzzle with nuclear receptors. Trends Mol Med 17:564–572

    Article  CAS  PubMed  Google Scholar 

  98. Bajor A, Gillberg PG, Abrahamsson H (2010) Bile acids: short and long term effects in the intestine. Scand J Gastroenterol 45:645–664

    Article  PubMed  Google Scholar 

  99. Roediger WE (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83:424–429

    CAS  PubMed  Google Scholar 

  100. Grubben MJ, van den Braak CC, Essenberg M, Olthof M, Tangerman A, Katan MB, Nagengast FM (2001) Effect of resistant starch on potential biomarkers for colonic cancer risk in patients with colonic adenomas: a controlled trial. Dig Dis Sci 46:750–756

    Article  CAS  PubMed  Google Scholar 

  101. Andoh A, Tsujikawa T, Fujiyama Y (2003) Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des 9:347–358

    Article  CAS  PubMed  Google Scholar 

  102. Galvez J, Rodriguez-Cabezas ME, Zarzuelo A (2005) Effects of dietary fiber on inflammatory bowel disease. Mol Nutr Food Res 49:601–608

    Article  PubMed  Google Scholar 

  103. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168

    Article  CAS  PubMed  Google Scholar 

  105. Acharya MR, Sparreboom A, Venitz J, Figg WD (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 68:917–932

    Article  CAS  PubMed  Google Scholar 

  106. Lan A, Lagadic-Gossmann D, Lemaire C, Brenner C, Jan G (2007) Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis 12:573–591

    Article  CAS  PubMed  Google Scholar 

  107. Harig JM, Soergel KH, Komorowski RA, Wood CM (1989) Treatment of diversion colitis with short-chain-fatty acid irrigation. N Engl J Med 320:23–28

    Article  CAS  PubMed  Google Scholar 

  108. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T et al (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  109. Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6:295–308

    Article  Google Scholar 

  110. Korecka A, Arulampalam V (2012) The gut microbiome: scourge, sentinel or spectator? J Oral Microbiol 4:10.3402/jom.v4i0.936

    Article  Google Scholar 

  111. Shanahan F (2012) The gut microbiota-a clinical perspective on lessons learned. Nat Rev Gastroenterol Hepatol 9:609–614

    Article  CAS  PubMed  Google Scholar 

  112. Badeaux AI, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224

    Article  CAS  PubMed Central  Google Scholar 

  113. Li R, Grimm SA, Chrysovergis K, Kosak J, Wang X, Du Y, Burkholder A, Janardhan K, Mav D, Shah R et al (2014) Obesity, rather than diet, drives epigenomic alterations in colonic epithelium resembling cancer progression. Cell Metab 19:702–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Symonds ME, Budge H, Frazier-Wood AC (2013) Epigenetics and obesity: a relationship waiting to be explained. Hum Hered 75:90–97

    Article  CAS  PubMed  Google Scholar 

  115. Huang YT, Maccani JZ, Hawley NL, Wing RR, Kelsey KT, McCaffery JM (2015) Epigenetic patterns in successful weight loss maintainers: a pilot study. Int J Obes (Lond) 39:865–868

    Article  CAS  Google Scholar 

  116. Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-Coxson D (2015) An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol 16:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kumar H, Lund R, Laiho A, Lundelin K, Ley RE, Isolauri E, Salminen S (2014) Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. mBio 5:e02113–e02114

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hartnett L, Egan LJ (2012) Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 33:723–731

    Article  CAS  PubMed  Google Scholar 

  119. Foran E, Garrity-Park MM, Mureau C, Newell J, Smyrk TC, Limburg PJ, Egan LJ (2010) Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol Cancer Res 8:471–481

    Article  CAS  PubMed  Google Scholar 

  120. O’Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai Y, Van Neste L, Easwaran H et al (2011) Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20:606–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T, Ichinose M, Tatematsu M, Ushijima T (2010) Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res 70:1430–1440

    Article  CAS  PubMed  Google Scholar 

  122. Kominsky DJ, Keely S, MacManus CF, Glover LE, Scully M, Collins CB, Bowers BE, Campbell EL, Colgan SP (2011) An endogenously anti-inflammatory role for methylation in mucosal inflammation identified through metabolite profiling. J Immunol 186:6505–6514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim AY, Park YJ, Pan X, Shin KC, Kwak SH, Bassas AF, Sallam RM, Park KS, Alfadda AA, Xu A, Kim JB (2015) Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun 6:7585

    Article  PubMed  PubMed Central  Google Scholar 

  124. Abu-Remaileh M, Bender S, Raddatz G, Ansari I, Cohen D, Gutekunst J, Musch T, Linhart H, Breiling A, Pikarsky E et al (2015) Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer. Cancer Res 75:2120–2130

    Article  CAS  PubMed  Google Scholar 

  125. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, Naslund E, Zierath JR (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3:1020–1027

    Article  CAS  PubMed  Google Scholar 

  126. Martin-Nunez GM, Cabrera-Mulero R, Rubio-Martin E, Rojo-Martinez G, Olveira G, Valdes S, Soriguer F, Castano L, Morcillo S (2014) Methylation levels of the SCD1 gene promoter and LINE-1 repeat region are associated with weight change: an intervention study. Mol Nutr Food Res 58:1528–1536

    Article  CAS  PubMed  Google Scholar 

  127. Zhao J, Goldberg J, Vaccarino V (2013) Promoter methylation of serotonin transporter gene is associated with obesity measures: a monozygotic twin study. Int J Obes (Lond) 37:140–145

    Article  CAS  Google Scholar 

  128. Milagro FI, Gomez-Abellan P, Campion J, Martinez JA, Ordovas JM, Garaulet M (2012) CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 29:1180–1194

    Article  CAS  PubMed  Google Scholar 

  129. Leung A, Parks BW, Du J, Trac C, Setten R, Chen Y, Brown K, Lusis AJ, Natarajan R, Schones DE (2014) Open chromatin profiling in mice livers reveals unique chromatin variations induced by high fat diet. J Biol Chem 289:23557–23567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kirchner H, Nylen C, Laber S, Barres R, Yan J, Krook A, Zierath JR, Naslund E (2014) Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en-Y gastric bypass. Surg Obes Relat Dis 10:671–678

    Article  PubMed  Google Scholar 

  131. Hermsdorff HH, Mansego ML, Campion J, Milagro FI, Zulet MA, Martinez JA (2013) TNF-alpha promoter methylation in peripheral white blood cells: relationship with circulating TNF alpha, truncal fat and n-6 PUFA intake in young women. Cytokine 64:265–271

    Article  CAS  PubMed  Google Scholar 

  132. Kuehnen P, Mischke M, Wiegand S, Sers C, Horsthemke B, Lau S, Keil T, Lee YA, Grueters A, Krude H (2012) An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet 8, e1002543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998

    Article  CAS  PubMed  Google Scholar 

  134. Xu X, Su S, Barnes VA, De Miguel C, Pollock J, Ownby D, Shi H, Zhu H, Snieder H, Wang X (2013) A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics 8:522–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T, Eiriksdottir G, Harris TB, Launer L, Gudnason V, Fallin MD (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2:49ra67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Wang X, Zhu H, Snieder H, Su S, Munn D, Harshfield G, Maria BL, Dong Y, Treiber F, Gutin B, Shi H (2010) Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med 8:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Mikula M, Majewska A, Ledwon JK, Dzwonek A, Ostrowski J (2014) Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver. Int J Mol Med 34:1647–1654

    CAS  PubMed  Google Scholar 

  138. Jufvas A, Sjodin S, Lundqvist K, Amin R, Vener AV, Stralfors P (2013) Global differences in specific histone H3 methylation are associated with overweight and type 2 diabetes. Clin Epigenet 5:15

    Article  CAS  Google Scholar 

  139. Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ (2003) Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol 149:331–335

    Article  CAS  PubMed  Google Scholar 

  140. Sridhar SS, Goodwin PJ (2009) Insulin-insulin-like growth factor axis and colon cancer. J Clin Oncol 27:165–167

    Article  PubMed  Google Scholar 

  141. Arzate-Mejia RG, Valle-Garcia D, Recillas-Targa F (2011) Signaling epigenetics: novel insights on cell signaling and epigenetic regulation. IUBMB Life 63:881–895

    Article  PubMed  CAS  Google Scholar 

  142. Mohammad HP, Baylin SB (2010) Linking cell signaling and the epigenetic machinery. Nat Biotechnol 28:1033–1038

    Article  CAS  PubMed  Google Scholar 

  143. Remely M, Aumueller E, Merold C, Dworzak S, Hippe B, Zanner J, Pointner A, Brath H, Haslberger AG (2014) Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537:85–92

    Article  CAS  PubMed  Google Scholar 

  144. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  146. Loenen WA (2006) S-adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans 34:330–333

    Article  CAS  PubMed  Google Scholar 

  147. Pogribny IP, Tryndyak VP, Bagnyukova TV, Melnyk S, Montgomery B, Ross SA, Latendresse JR, Rusyn I, Beland FA (2009) Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J Hepatol 51:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pogribny IP, Karpf AR, James SR, Melnyk S, Han T, Tryndyak VP (2008) Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res 1237:25–34

    Article  CAS  PubMed  Google Scholar 

  149. Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: epigenetics and metabolism. Cell 148:24–28

    Article  CAS  PubMed  Google Scholar 

  151. Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502:489–498

    Article  CAS  PubMed  Google Scholar 

  152. Chen HH, Tseng YJ, Wang SY, Tsai YS, Chang CS, Kuo TC, Yao WJ, Shieh CC, Wu CH, Kuo PH (2015) The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes (Lond) 39:1241–1248

    Article  CAS  Google Scholar 

  153. Sanchez I, Reynoso-Camacho R, Salgado LM (2015) The diet-induced metabolic syndrome is accompanied by whole-genome epigenetic changes. Genes Nutr 10:471

    Article  PubMed  CAS  Google Scholar 

  154. Hanhineva K, Barri T, Kolehmainen M, Pekkinen J, Pihlajamaki J, Vesterbacka A, Solano-Aguilar G, Mykkanen H, Dragsted LO, Urban JF Jr, Poutanen K (2013) Comparative nontargeted profiling of metabolic changes in tissues and biofluids in high-fat diet-fed Ossabaw pig. J Proteome Res 12:3980–3992

    Article  CAS  PubMed  Google Scholar 

  155. Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, Gomez Padilla P, Ables G, Bamman MM, Thalacker-Mercer AE et al (2015) Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism. Cell Metab

    Google Scholar 

  156. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M et al (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21:392–402

    Article  CAS  PubMed  Google Scholar 

  157. Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219

    Article  PubMed  Google Scholar 

  158. Collins S, Martin TL, Surwit RS, Robidoux J (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav 81:243–248

    Article  CAS  PubMed  Google Scholar 

  159. Guo J, Jou W, Gavrilova O, Hall KD (2009) Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS One 4, e5370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M, Heits N, Bell JT, Tsai PC, Spector TD et al (2014) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A 111:15538–15543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kirchner H, Osler ME, Krook A, Zierath JR (2013) Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 23:203–209

    Article  CAS  PubMed  Google Scholar 

  162. Helin K, Dhanak D (2013) Chromatin proteins and modifications as drug targets. Nature 502:480–488

    Article  CAS  PubMed  Google Scholar 

  163. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the members of the Wade laboratory for useful discussions and feedback provided during the course of this work. This work was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ES101965 to P.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Wade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, R., Wade, P.A. (2016). Epigenetics, Obesity, and Colon Cancer. In: Berger, N. (eds) Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-41610-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41610-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41608-3

  • Online ISBN: 978-3-319-41610-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics